[3, 2; 67, 2; 683, 1; 2011, 1; 9649, 1; 13267, 1; 20857, 1; 283009, 1; 6324667, 1; 7327657, 1; 361859649163, 1; 6713103182899, 1; 224134035919267, 1; 3556355492892313, 1; 17153597302151518561, 1; 59151549118532676874448563, 1; 1647072866431538116058878617811, 1; 49929707724752567469731915956762751258933207272739486748238351859309991348433, 1; 40393566547943595749562506243285884534929026356774912763863482259566537671583290150415083011252727505582091, 1; 29792282327632127192280512714312339494458105715740509816040019161219528270861465666941470299423164525021764760664757557501816665197191248140710453823079834899917278481203481942074120698987141443607970695192539694488469929529584413885826254451155851081784465332583575562462448913571987013144129130422035667076921, 1]
Run 605 out of 0:
Using B1=1755043, B2=2140281790, polynomial Dickson(6), sigma=1856383114
Step 1 took 167035ms
********** Factor found in step 1: 1647072866431538116058878617811
Found probable prime factor of 31 digits: 1647072866431538116058878617811
Probable prime cofactor 29792282327632127192280512714312339494458105715740509816040019161219528270861465666941470299423164525021764760664757557501816665197191248140710453823079834899917278481203481942074120698987141443607970695192539694488469929529584413885826254451155851081784465332583575562462448913571987013144129130422035667076921 has 311 digits
No comments :
Post a Comment