Ramanujan's 4th-root approximation of pi is neat because it also involves the number 22 much like the famous approximation 22/7.

Pi =

(2143/22)^(1/4)+1/992903605.478750724693897709798

(2143/22)^(1/4+1/14283017647.807238071433978019)

(2143/22)^(1/(4-1/892688603.23795237946462362620))

(2143/22+1/8005666.20908620584097400452614)^(1/4)

((2143+1/363893.918594827538226091114825)/22)^(1/4)

(2143/(22-1/35446575.8431234279281142390483))^(1/4)

(2143/22)^(1/4)*(1+1/3119298671.6948616572733219325)

(2143/22*(1+1/779824667.548715414418513259069))^(1/4)

(2143/22)^((1+1/3570754411.9518095178584945048)/4)

(2143/22)^(1/4)+(2143/22)^-4.52424288147416889424548494637

## 1 comment :

2143=22*9^2+19^2,PI~sqrt(sqrt(9^2+19^2/22))

Post a Comment