let f = product . map floor . takeWhile (1<) . iterate log_2
let g = product . map ceiling . takeWhile (1<) . iterate log_2
(Haskell syntax)
| n | f | f product | g | g product |
|---|---|---|---|---|
| 1 | 1 | = 1 | 1 | = 1 |
| 2 | 2 | = 2 * 1 | 2 | = 2 * 1 |
| 3 | 3 | = 3 * 1 | 6 | = 3 * 2 * 1 |
| 4 | 8 | = 4 * 2 * 1 | 8 | = 4 * 2 * 1 |
| 5 | 10 | = 5 * 2 * 1 | 30 | = 5 * 3 * 2 * 1 |
| 6 | 12 | = 6 * 2 * 1 | 36 | = 6 * 3 * 2 * 1 |
| 7 | 14 | = 7 * 2 * 1 | 42 | = 7 * 3 * 2 * 1 |
| 8 | 24 | = 8 * 3 * 1 | 48 | = 8 * 3 * 2 * 1 |
| 9 | 27 | = 9 * 3 * 1 | 72 | = 9 * 4 * 2 * 1 |
| 10 | 30 | = 10 * 3 * 1 | 80 | = 10 * 4 * 2 * 1 |
| 11 | 33 | = 11 * 3 * 1 | 88 | = 11 * 4 * 2 * 1 |
| 12 | 36 | = 12 * 3 * 1 | 96 | = 12 * 4 * 2 * 1 |
| 13 | 39 | = 13 * 3 * 1 | 104 | = 13 * 4 * 2 * 1 |
| 14 | 42 | = 14 * 3 * 1 | 112 | = 14 * 4 * 2 * 1 |
| 15 | 45 | = 15 * 3 * 1 | 120 | = 15 * 4 * 2 * 1 |
| 16 | 128 | = 16 * 4 * 2 * 1 | 128 | = 16 * 4 * 2 * 1 |
| 17 | 136 | = 17 * 4 * 2 * 1 | 510 | = 17 * 5 * 3 * 2 * 1 |
| 18 | 144 | = 18 * 4 * 2 * 1 | 540 | = 18 * 5 * 3 * 2 * 1 |
| 19 | 152 | = 19 * 4 * 2 * 1 | 570 | = 19 * 5 * 3 * 2 * 1 |
| 20 | 160 | = 20 * 4 * 2 * 1 | 600 | = 20 * 5 * 3 * 2 * 1 |
| 21 | 168 | = 21 * 4 * 2 * 1 | 630 | = 21 * 5 * 3 * 2 * 1 |
| 22 | 176 | = 22 * 4 * 2 * 1 | 660 | = 22 * 5 * 3 * 2 * 1 |
| 23 | 184 | = 23 * 4 * 2 * 1 | 690 | = 23 * 5 * 3 * 2 * 1 |
| 24 | 192 | = 24 * 4 * 2 * 1 | 720 | = 24 * 5 * 3 * 2 * 1 |
| 25 | 200 | = 25 * 4 * 2 * 1 | 750 | = 25 * 5 * 3 * 2 * 1 |
| 26 | 208 | = 26 * 4 * 2 * 1 | 780 | = 26 * 5 * 3 * 2 * 1 |
| 27 | 216 | = 27 * 4 * 2 * 1 | 810 | = 27 * 5 * 3 * 2 * 1 |
| 28 | 224 | = 28 * 4 * 2 * 1 | 840 | = 28 * 5 * 3 * 2 * 1 |
| 29 | 232 | = 29 * 4 * 2 * 1 | 870 | = 29 * 5 * 3 * 2 * 1 |
| 30 | 240 | = 30 * 4 * 2 * 1 | 900 | = 30 * 5 * 3 * 2 * 1 |
| 31 | 248 | = 31 * 4 * 2 * 1 | 930 | = 31 * 5 * 3 * 2 * 1 |
| 32 | 320 | = 32 * 5 * 2 * 1 | 960 | = 32 * 5 * 3 * 2 * 1 |
| 33 | 330 | = 33 * 5 * 2 * 1 | 1188 | = 33 * 6 * 3 * 2 * 1 |
| 34 | 340 | = 34 * 5 * 2 * 1 | 1224 | = 34 * 6 * 3 * 2 * 1 |
| 35 | 350 | = 35 * 5 * 2 * 1 | 1260 | = 35 * 6 * 3 * 2 * 1 |
| 65534 | 2949030 | = 65534 * 15 * 3 * 1 | 8388352 | = 65534 * 16 * 4 * 2 * 1 |
| 65535 | 2949075 | = 65535 * 15 * 3 * 1 | 8388480 | = 65535 * 16 * 4 * 2 * 1 |
| 65536 | 8388608 | = 65536 * 16 * 4 * 2 * 1 | 8388608 | = 65536 * 16 * 4 * 2 * 1 |
| 65537 | 8388736 | = 65537 * 16 * 4 * 2 * 1 | 33423870 | = 65537 * 17 * 5 * 3 * 2 * 1 |
| 65538 | 8388864 | = 65538 * 16 * 4 * 2 * 1 | 33424380 | = 65538 * 17 * 5 * 3 * 2 * 1 |
OEIS A216761 and A216762.
The reciprocals form a very slowly diverging series, perhaps slower than any other integer sequence.
A fibonacci sequence version, which is essentially logarithms base phi?
A real-valued version using natural logarithms is: product . takeWhile (1<) . iterate log, which is continuous but defined piecewise. Is there a non piecewise function?
No comments :
Post a Comment