$ wget http://bs.mit.edu/mitca.ca
--00:02:56-- http://bs.mit.edu/mitca.ca
=> `mitca.ca'
Resolving bs.mit.edu... 18.7.21.84
Connecting to bs.mit.edu[18.7.21.84]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 617 [application/x-x509-ca-cert]
100%[====================================>] 617 --.--K/s
00:02:56 (5.88 MB/s) - `mitca.ca' saved [617/617]
$ openssl x509 -inform DER -text -in mitca.ca -noout
Certificate:
Data:
Version: 1 (0x0)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=US, ST=Massachusetts, O=Massachusetts Institute of Technology, OU=MIT Certification Authority
Validity
Not Before: Jul 15 20:23:00 1996 GMT
Not After : Jul 13 20:23:00 2006 GMT
Subject: C=US, ST=Massachusetts, O=Massachusetts Institute of Technology, OU=MIT Certification Authority
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):
00:d3:d0:eb:e7:51:b5:33:75:a6:d8:a3:84:ea:02:
70:5c:cf:9c:20:e0:0b:03:8b:8e:46:6e:15:25:e1:
77:f6:6b:c4:70:dd:d4:16:0b:cc:11:88:31:38:0b:
ee:7c:59:24:57:e9:8d:cd:75:f8:52:63:dd:33:0c:
f0:4f:9f:b5:fc:91:ae:32:85:8c:1a:75:63:19:98:
86:1e:92:23:b2:87:f3:f5:c9:a6:a2:97:68:f2:ec:
b2:1a:ad:b3:f5:ed:09:ea:cc:e7:bc:b4:64:50:15:
e6:57:00:1a:7a:c6:de:fe:e1:30:58:5a:5d:ab:bb:
b4:1c:11:ec:64:c1:d3:a4:55
Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption
01:19:13:24:13:13:28:10:db:54:0d:00:24:18:ca:02:35:27:
af:bb:39:03:c5:e2:76:b9:7b:49:f9:1d:91:cb:52:fd:b6:09:
52:c4:ed:73:93:37:37:e2:cc:6f:18:a8:3f:47:9e:16:c6:60:
31:81:3a:21:7f:f8:27:05:2a:88:e6:51:0d:ae:24:32:b9:c5:
6a:04:02:be:4f:60:95:d2:82:92:6a:ec:65:0c:54:39:5b:54:
74:52:a2:85:6c:80:be:4d:29:f3:75:be:e0:d5:80:70:6b:dc:
39:5a:13:68:c6:ec:0e:87:b7:31:26:26:56:2d:86:bb:4c:80:
7b:43
$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
ibase=16
00D3D0EBE751B53375A6D8A384EA02\
705CCF9C20E00B038B8E466E1525E1\
77F66BC470DDD4160BCC118831380B\
EE7C592457E98DCD75F85263DD330C\
F04F9FB5FC91AE32858C1A75631998\
861E9223B287F3F5C9A6A29768F2EC\
B21AADB3F5ED09EACCE7BCB4645015\
E657001A7AC6DEFEE130585A5DABBB\
B41C11EC64C1D3A455
14874232348041148870879819006215632592626006624089886671166071398570\
02103995689503190533069669831630135040326377461588598729653631965144\
40766020608225910888987591998289529837389575629713521989417386401506\
78089276107148587284179435836431649958136516334321733549452470076311\
2519694607834206454009153643273757781
quit
$ t=14874232348041148870879819006215632592626006624089886671166071398570\
02103995689503190533069669831630135040326377461588598729653631965144\
40766020608225910888987591998289529837389575629713521989417386401506\
78089276107148587284179435836431649958136516334321733549452470076311\
2519694607834206454009153643273757781
> > > > $ $
$ /afs/sipb.mit.edu/project/pari-gp/arch/i386_rh9/bin/gp
GP/PARI CALCULATOR Version 2.1.5 (released)
i686 running linux (ix86 kernel) 32-bit version
(readline v4.2 enabled, extended help available)
Copyright (C) 2002 The PARI Group
PARI/GP is free software, covered by the GNU General Public License, and
comes WITHOUT ANY WARRANTY WHATSOEVER.
Type ? for help, \q to quit.
Type ?12 for how to get moral (and possibly technical) support.
realprecision = 28 significant digits
seriesprecision = 16 significant terms
format = g0.28
parisize = 4000000, primelimit = 500000
? \g5
debug = 5
? factorint(148742323480411488708798190062156325926260066240898866711660713985700210399568950319053306966983163013504032637746158859872965363196514440766020608225910888987591998289529837389575629713521989417386401506780892761071485872841794358364316499581365163343217335494524700763112519694607834206454009153643273757781)
Miller-Rabin: testing base 1000288896
IFAC: cracking composite
148742323480411488708798190062156325926260066240898866711660713985700210399568950319053306966983163013504032637746158859872965363196514440766020608225910888987591998289529837389575629713521989417386401506780892761071485872841794358364316499581365163343217335494524700763112519694607834206454009153643273757781
IFAC: checking for pure square
OddPwrs: is 148742323480411488708798190062156325926260066240898866711660713985700210399568950319053306966983163013504032637746158859872965363196514440766020608225910888987591998289529837389575629713521989417386401506780892761071485872841794358364316499581365163343217335494524700763112519694607834206454009153643273757781
...a 3rd, 5th, or 7th power?
modulo: resid. (remaining possibilities)
211: 86 (3rd 1, 5th 0, 7th 0)
209: 6 (3rd 0, 5th 0, 7th 0)
IFAC: trying Pollard-Brent rho method first
Rho: searching small factor of 1024-bit integer
Rho: using X^2+1 for up to 49152 rounds of 32 iterations
Rho: time = 73790 ms, 24576 rounds
Rho: fast forward phase (8192 rounds of 64)...
Rho: time = 34590 ms, 32772 rounds, back to normal mode
Rho: time = 19330 ms, 40960 rounds
Rho: time = 19490 ms, Pollard-Brent giving up.
IFAC: trying Shanks' SQUFOF, will fail silently if input
is too large for it.
IFAC: trying Lenstra-Montgomery ECM
ECM: working on 64 curves at a time; initializing for up to 400 rounds...
ECM: time = 0 ms
ECM: dsn = 12, B1 = 1800, B2 = 198000, gss = 128*420
ECM: time = 73080 ms, B1 phase done, p = 1801, setting up for B2
ECM: time = 1300 ms, entering B2 phase, p = 2017
ECM: time = 45340 ms
ECM: dsn = 14, B1 = 2200, B2 = 242000, gss = 128*420
No comments :
Post a Comment