largest safe prime less than each power of 2 (OEIS A057821). find smallest generator g with znprimroot. solve for g^x = 3, because 3 seems to never be a primitive root of a safe prime. (theme is "minimum effort".) (previously, focusing on g=2.) prime factors of the solution, for no good reason other than "because we can". answer is always even; probably straightforward why.
GP/PARI version 2.11.2 . some calculations were done twice, once with 4 GB memory, then with 2 GB. huge differences in computation time between runs, e.g., at exponent 179, reflect the weirdness of cloud computing (AWS), not the effect of memory. 3 exponents (196, 199, 200) ran out of memory with 4 GB (but probably easily doable with slightly more memory); 200 bits is probably the patience limit with Pari/GP.
4 CPU. only a small portion of Pari/GP's discrete logarithm implementation is parallelized.
Cado-NFS seems to be the state of the art for integer discrete logarithm, not explored here.
allocatemem(4*10^9);
calc(e)=my(start=2^e); for(i=1, start, my(p=start-i); if(p%12==11 && ispseudoprime(p) && ispseudoprime((p-1)/2), my(y=znprimroot(p)); my(s=znlog(3, y)); print("3 == Mod(", lift(y), ", 2^", e, "-", i, ")^", s); print("factorint(exponent)=", factorint(s)); break));
3 == Mod(2,2^4-5)^8
factorint(exponent)=Mat([2, 3])
0.00user 0.00system 0:00.00elapsed 62%CPU (0avgtext+0avgdata 7780maxresident)k
256inputs+0outputs (1major+670minor)pagefaults 0swaps
3 == Mod(5,2^5-9)^16
factorint(exponent)=Mat([2, 4])
0.00user 0.00system 0:00.00elapsed 80%CPU (0avgtext+0avgdata 7864maxresident)k
0inputs+0outputs (0major+674minor)pagefaults 0swaps
3 == Mod(2,2^6-5)^50
factorint(exponent)=[2, 1; 5, 2]
0.00user 0.00system 0:00.00elapsed 83%CPU (0avgtext+0avgdata 7740maxresident)k
0inputs+0outputs (0major+668minor)pagefaults 0swaps
3 == Mod(2,2^7-21)^70
factorint(exponent)=[2, 1; 5, 1; 7, 1]
0.00user 0.00system 0:00.00elapsed 83%CPU (0avgtext+0avgdata 7776maxresident)k
0inputs+0outputs (0major+669minor)pagefaults 0swaps
3 == Mod(2,2^8-29)^46
factorint(exponent)=[2, 1; 23, 1]
0.00user 0.00system 0:00.00elapsed 83%CPU (0avgtext+0avgdata 7900maxresident)k
0inputs+0outputs (0major+670minor)pagefaults 0swaps
3 == Mod(5,2^9-9)^156
factorint(exponent)=[2, 2; 3, 1; 13, 1]
0.00user 0.00system 0:00.00elapsed 66%CPU (0avgtext+0avgdata 7832maxresident)k
0inputs+0outputs (0major+669minor)pagefaults 0swaps
3 == Mod(2,2^10-5)^958
factorint(exponent)=[2, 1; 479, 1]
0.00user 0.00system 0:00.00elapsed 100%CPU (0avgtext+0avgdata 7856maxresident)k
0inputs+0outputs (0major+672minor)pagefaults 0swaps
3 == Mod(7,2^11-9)^1278
factorint(exponent)=[2, 1; 3, 2; 71, 1]
0.00user 0.00system 0:00.00elapsed 100%CPU (0avgtext+0avgdata 7996maxresident)k
0inputs+0outputs (0major+670minor)pagefaults 0swaps
3 == Mod(11,2^12-17)^2562
factorint(exponent)=[2, 1; 3, 1; 7, 1; 61, 1]
0.00user 0.00system 0:00.00elapsed 83%CPU (0avgtext+0avgdata 7844maxresident)k
0inputs+0outputs (0major+671minor)pagefaults 0swaps
3 == Mod(2,2^13-45)^5636
factorint(exponent)=[2, 2; 1409, 1]
0.00user 0.00system 0:00.00elapsed 83%CPU (0avgtext+0avgdata 7896maxresident)k
0inputs+0outputs (0major+670minor)pagefaults 0swaps
3 == Mod(5,2^14-161)^12268
factorint(exponent)=[2, 2; 3067, 1]
0.00user 0.00system 0:00.00elapsed 83%CPU (0avgtext+0avgdata 7772maxresident)k
0inputs+0outputs (0major+672minor)pagefaults 0swaps
3 == Mod(2,2^15-165)^18308
factorint(exponent)=[2, 2; 23, 1; 199, 1]
0.00user 0.00system 0:00.00elapsed 83%CPU (0avgtext+0avgdata 7720maxresident)k
0inputs+0outputs (0major+668minor)pagefaults 0swaps
3 == Mod(2,2^16-269)^17580
factorint(exponent)=[2, 2; 3, 1; 5, 1; 293, 1]
0.00user 0.00system 0:00.00elapsed 83%CPU (0avgtext+0avgdata 8040maxresident)k
0inputs+0outputs (0major+671minor)pagefaults 0swaps
3 == Mod(2,2^17-285)^9138
factorint(exponent)=[2, 1; 3, 1; 1523, 1]
0.00user 0.00system 0:00.00elapsed 83%CPU (0avgtext+0avgdata 7884maxresident)k
0inputs+0outputs (0major+670minor)pagefaults 0swaps
3 == Mod(5,2^18-17)^83120
factorint(exponent)=[2, 4; 5, 1; 1039, 1]
0.00user 0.00system 0:00.00elapsed 100%CPU (0avgtext+0avgdata 7800maxresident)k
0inputs+0outputs (0major+672minor)pagefaults 0swaps
3 == Mod(2,2^19-45)^415094
factorint(exponent)=[2, 1; 207547, 1]
0.00user 0.00system 0:00.00elapsed 85%CPU (0avgtext+0avgdata 7752maxresident)k
0inputs+0outputs (0major+673minor)pagefaults 0swaps
3 == Mod(5,2^20-233)^339816
factorint(exponent)=[2, 3; 3, 1; 14159, 1]
0.00user 0.00system 0:00.00elapsed 85%CPU (0avgtext+0avgdata 8064maxresident)k
0inputs+0outputs (0major+679minor)pagefaults 0swaps
3 == Mod(5,2^21-9)^135398
factorint(exponent)=[2, 1; 67699, 1]
0.00user 0.00system 0:00.00elapsed 100%CPU (0avgtext+0avgdata 7812maxresident)k
0inputs+0outputs (0major+677minor)pagefaults 0swaps
3 == Mod(5,2^22-17)^474234
factorint(exponent)=[2, 1; 3, 1; 79039, 1]
0.00user 0.00system 0:00.00elapsed 100%CPU (0avgtext+0avgdata 8144maxresident)k
0inputs+0outputs (0major+685minor)pagefaults 0swaps
3 == Mod(5,2^23-321)^2166146
factorint(exponent)=[2, 1; 1083073, 1]
0.00user 0.00system 0:00.00elapsed 85%CPU (0avgtext+0avgdata 7816maxresident)k
0inputs+0outputs (0major+686minor)pagefaults 0swaps
3 == Mod(2,2^24-317)^10259132
factorint(exponent)=[2, 2; 13, 1; 83, 1; 2377, 1]
0.00user 0.00system 0:00.00elapsed 85%CPU (0avgtext+0avgdata 7756maxresident)k
0inputs+0outputs (0major+691minor)pagefaults 0swaps
3 == Mod(11,2^25-633)^18850260
factorint(exponent)=[2, 2; 3, 1; 5, 1; 11, 1; 13, 4]
0.00user 0.00system 0:00.00elapsed 85%CPU (0avgtext+0avgdata 8160maxresident)k
0inputs+0outputs (0major+705minor)pagefaults 0swaps
3 == Mod(2,2^26-677)^17197828
factorint(exponent)=[2, 2; 67, 1; 64171, 1]
0.00user 0.00system 0:00.00elapsed 87%CPU (0avgtext+0avgdata 8408maxresident)k
0inputs+0outputs (0major+722minor)pagefaults 0swaps
3 == Mod(2,2^27-405)^124945580
factorint(exponent)=[2, 2; 5, 1; 17, 1; 179, 1; 2053, 1]
0.00user 0.00system 0:00.00elapsed 100%CPU (0avgtext+0avgdata 8696maxresident)k
0inputs+0outputs (0major+763minor)pagefaults 0swaps
3 == Mod(2,2^28-437)^229229706
factorint(exponent)=[2, 1; 3, 1; 38204951, 1]
0.00user 0.00system 0:00.00elapsed 88%CPU (0avgtext+0avgdata 8656maxresident)k
0inputs+0outputs (0major+783minor)pagefaults 0swaps
3 == Mod(2,2^29-189)^201402238
factorint(exponent)=[2, 1; 47, 1; 2142577, 1]
0.01user 0.00system 0:00.01elapsed 125%CPU (0avgtext+0avgdata 11724maxresident)k
256inputs+0outputs (0major+1839minor)pagefaults 0swaps
3 == Mod(7,2^30-1385)^605039718
factorint(exponent)=[2, 1; 3, 1; 100839953, 1]
0.01user 0.00system 0:00.01elapsed 121%CPU (0avgtext+0avgdata 11796maxresident)k
0inputs+0outputs (0major+1858minor)pagefaults 0swaps
3 == Mod(2,2^31-69)^1121130154
factorint(exponent)=[2, 1; 59, 1; 251, 1; 37853, 1]
0.01user 0.00system 0:00.01elapsed 120%CPU (0avgtext+0avgdata 12904maxresident)k
0inputs+0outputs (0major+2135minor)pagefaults 0swaps
3 == Mod(5,2^32-209)^3229264744
factorint(exponent)=[2, 3; 2207, 1; 182899, 1]
0.00user 0.01system 0:00.01elapsed 128%CPU (0avgtext+0avgdata 12728maxresident)k
0inputs+0outputs (0major+2109minor)pagefaults 0swaps
3 == Mod(5,2^33-9)^1265148860
factorint(exponent)=[2, 2; 5, 1; 373, 1; 169591, 1]
0.01user 0.00system 0:00.01elapsed 129%CPU (0avgtext+0avgdata 14456maxresident)k
0inputs+0outputs (0major+2507minor)pagefaults 0swaps
3 == Mod(5,2^34-641)^9015084332
factorint(exponent)=[2, 2; 31, 1; 43, 1; 127, 1; 13313, 1]
0.01user 0.00system 0:00.01elapsed 131%CPU (0avgtext+0avgdata 14388maxresident)k
0inputs+0outputs (0major+2527minor)pagefaults 0swaps
3 == Mod(7,2^35-849)^594618842
factorint(exponent)=[2, 1; 29, 1; 10252049, 1]
0.01user 0.01system 0:00.01elapsed 127%CPU (0avgtext+0avgdata 14384maxresident)k
0inputs+0outputs (0major+2474minor)pagefaults 0swaps
3 == Mod(7,2^36-137)^38160775724
factorint(exponent)=[2, 2; 9540193931, 1]
0.01user 0.00system 0:00.01elapsed 127%CPU (0avgtext+0avgdata 15764maxresident)k
0inputs+0outputs (0major+2914minor)pagefaults 0swaps
3 == Mod(2,2^37-45)^96789562556
factorint(exponent)=[2, 2; 42457, 1; 569927, 1]
0.02user 0.00system 0:00.02elapsed 128%CPU (0avgtext+0avgdata 17348maxresident)k
0inputs+0outputs (0major+3299minor)pagefaults 0swaps
3 == Mod(5,2^38-401)^116466617970
factorint(exponent)=[2, 1; 3, 2; 5, 1; 1294073533, 1]
0.02user 0.00system 0:00.02elapsed 127%CPU (0avgtext+0avgdata 17036maxresident)k
0inputs+0outputs (0major+3167minor)pagefaults 0swaps
3 == Mod(2,2^39-381)^229407291856
factorint(exponent)=[2, 4; 59, 1; 463, 1; 524873, 1]
0.01user 0.01system 0:00.02elapsed 128%CPU (0avgtext+0avgdata 18556maxresident)k
0inputs+0outputs (0major+3599minor)pagefaults 0swaps
3 == Mod(2,2^40-437)^755382649662
factorint(exponent)=[2, 1; 3, 2; 809, 1; 51873551, 1]
0.02user 0.00system 0:00.02elapsed 130%CPU (0avgtext+0avgdata 19516maxresident)k
0inputs+0outputs (0major+3805minor)pagefaults 0swaps
3 == Mod(2,2^41-1965)^1926191985122
factorint(exponent)=[2, 1; 23, 1; 31159, 1; 1343873, 1]
0.01user 0.02system 0:00.03elapsed 130%CPU (0avgtext+0avgdata 22728maxresident)k
0inputs+0outputs (0major+4547minor)pagefaults 0swaps
3 == Mod(5,2^42-2201)^3689090118074
factorint(exponent)=[2, 1; 877, 1; 1181, 1; 1780901, 1]
0.01user 0.03system 0:00.03elapsed 127%CPU (0avgtext+0avgdata 23500maxresident)k
0inputs+0outputs (0major+4751minor)pagefaults 0swaps
3 == Mod(2,2^43-741)^1511658614712
factorint(exponent)=[2, 3; 3, 1; 29, 1; 2171923297, 1]
0.03user 0.01system 0:00.03elapsed 121%CPU (0avgtext+0avgdata 25632maxresident)k
0inputs+0outputs (0major+5280minor)pagefaults 0swaps
3 == Mod(2,2^44-1493)^11282099110828
factorint(exponent)=[2, 2; 7, 1; 13, 1; 30994777777, 1]
0.02user 0.02system 0:00.03elapsed 132%CPU (0avgtext+0avgdata 25324maxresident)k
0inputs+0outputs (0major+5267minor)pagefaults 0swaps
3 == Mod(2,2^45-573)^14386750971720
factorint(exponent)=[2, 3; 3, 1; 5, 1; 117241, 1; 1022591, 1]
0.02user 0.02system 0:00.03elapsed 126%CPU (0avgtext+0avgdata 28088maxresident)k
0inputs+0outputs (0major+5952minor)pagefaults 0swaps
3 == Mod(5,2^46-857)^38784396013480
factorint(exponent)=[2, 3; 5, 1; 13, 1; 74585376949, 1]
0.01user 0.03system 0:00.04elapsed 123%CPU (0avgtext+0avgdata 32844maxresident)k
0inputs+0outputs (0major+7182minor)pagefaults 0swaps
3 == Mod(2,2^47-1485)^79006464230760
factorint(exponent)=[2, 3; 3, 3; 5, 1; 11, 1; 6650375777, 1]
0.04user 0.02system 0:00.05elapsed 123%CPU (0avgtext+0avgdata 36104maxresident)k
0inputs+0outputs (0major+7976minor)pagefaults 0swaps
3 == Mod(13,2^48-5297)^208946968731140
factorint(exponent)=[2, 2; 5, 1; 10447348436557, 1]
0.04user 0.02system 0:00.05elapsed 126%CPU (0avgtext+0avgdata 38996maxresident)k
0inputs+0outputs (0major+8630minor)pagefaults 0swaps
3 == Mod(2,2^49-2709)^562834448082602
factorint(exponent)=[2, 1; 19, 1; 239, 1; 421, 1; 443, 1; 332287, 1]
0.05user 0.02system 0:00.05elapsed 125%CPU (0avgtext+0avgdata 41220maxresident)k
0inputs+0outputs (0major+9221minor)pagefaults 0swaps
3 == Mod(5,2^50-161)^507490682597280
factorint(exponent)=[2, 5; 3, 2; 5, 1; 352424085137, 1]
0.06user 0.01system 0:00.08elapsed 85%CPU (0avgtext+0avgdata 43708maxresident)k
0inputs+0outputs (0major+9799minor)pagefaults 0swaps
3 == Mod(5,2^51-465)^1866897323859712
factorint(exponent)=[2, 8; 2140091, 1; 3407597, 1]
0.07user 0.01system 0:00.06elapsed 127%CPU (0avgtext+0avgdata 46548maxresident)k
0inputs+0outputs (0major+10595minor)pagefaults 0swaps
3 == Mod(5,2^52-473)^3457570938106926
factorint(exponent)=[2, 1; 3, 1; 31, 1; 47, 1; 395512575853, 1]
0.07user 0.02system 0:00.07elapsed 125%CPU (0avgtext+0avgdata 53248maxresident)k
0inputs+0outputs (0major+12204minor)pagefaults 0swaps
3 == Mod(2,2^53-1269)^4374727332610974
factorint(exponent)=[2, 1; 3, 1; 79, 1; 9229382558251, 1]
0.06user 0.03system 0:00.08elapsed 126%CPU (0avgtext+0avgdata 57388maxresident)k
0inputs+0outputs (0major+13324minor)pagefaults 0swaps
3 == Mod(2,2^54-4805)^13208260030685170
factorint(exponent)=[2, 1; 5, 1; 11, 1; 127, 2; 7444670543, 1]
0.06user 0.05system 0:00.09elapsed 123%CPU (0avgtext+0avgdata 65616maxresident)k
0inputs+0outputs (0major+15362minor)pagefaults 0swaps
3 == Mod(2,2^55-789)^16727815831732612
factorint(exponent)=[2, 2; 30726833, 1; 136101041, 1]
0.07user 0.04system 0:00.10elapsed 122%CPU (0avgtext+0avgdata 75384maxresident)k
0inputs+0outputs (0major+17795minor)pagefaults 0swaps
3 == Mod(5,2^56-2249)^25060352019523000
factorint(exponent)=[2, 3; 5, 3; 61, 1; 67, 1; 101, 1; 60710129, 1]
0.10user 0.04system 0:00.12elapsed 124%CPU (0avgtext+0avgdata 85948maxresident)k
0inputs+0outputs (0major+20397minor)pagefaults 0swaps
3 == Mod(19,2^57-3993)^72430712547971922
factorint(exponent)=[2, 1; 3, 2; 23, 1; 174953411951623, 1]
0.07user 0.07system 0:00.12elapsed 122%CPU (0avgtext+0avgdata 88756maxresident)k
0inputs+0outputs (0major+21071minor)pagefaults 0swaps
3 == Mod(5,2^58-137)^286258982192253662
factorint(exponent)=[2, 1; 71, 2; 2141, 1; 30871, 1; 429581, 1]
0.13user 0.03system 0:00.13elapsed 124%CPU (0avgtext+0avgdata 94360maxresident)k
0inputs+0outputs (0major+22523minor)pagefaults 0swaps
3 == Mod(11,2^59-18009)^148441107151886308
factorint(exponent)=[2, 2; 23, 1; 1875011, 1; 860523109, 1]
0.14user 0.05system 0:00.16elapsed 122%CPU (0avgtext+0avgdata 112112maxresident)k
0inputs+0outputs (0major+26973minor)pagefaults 0swaps
3 == Mod(2,2^60-3677)^480235714679370156
factorint(exponent)=[2, 2; 3, 1; 13, 2; 107, 1; 137, 1; 727, 1; 4057, 1; 5477, 1]
0.13user 0.06system 0:00.16elapsed 124%CPU (0avgtext+0avgdata 117292maxresident)k
0inputs+0outputs (0major+28293minor)pagefaults 0swaps
3 == Mod(2,2^61-2373)^957449602487849750
factorint(exponent)=[2, 1; 5, 3; 23, 1; 163, 1; 1021551989851, 1]
0.14user 0.07system 0:00.18elapsed 123%CPU (0avgtext+0avgdata 130832maxresident)k
0inputs+0outputs (0major+31625minor)pagefaults 0swaps
3 == Mod(2,2^62-10565)^94514149434931430
factorint(exponent)=[2, 1; 5, 1; 19, 1; 503, 1; 3533, 1; 279918503, 1]
0.14user 0.11system 0:00.21elapsed 120%CPU (0avgtext+0avgdata 163576maxresident)k
0inputs+0outputs (0major+39870minor)pagefaults 0swaps
3 == Mod(11,2^63-4569)^6948736140513940702
factorint(exponent)=[2, 1; 41, 1; 14243, 1; 5949637340477, 1]
0.20user 0.09system 0:00.24elapsed 120%CPU (0avgtext+0avgdata 177880maxresident)k
0inputs+0outputs (0major+43444minor)pagefaults 0swaps
3 == Mod(2,2^64-1469)^563713182774917706
factorint(exponent)=[2, 1; 3, 1; 123479, 1; 169321, 1; 4493689, 1]
0.23user 0.11system 0:00.32elapsed 108%CPU (0avgtext+0avgdata 223568maxresident)k
0inputs+0outputs (0major+54887minor)pagefaults 0swaps
3 == Mod(2,2^65-3213)^34411559200920737838
factorint(exponent)=[2, 1; 3, 4; 1087, 1; 5233, 1; 19387, 1; 1926187, 1]
0.27user 0.13system 0:00.34elapsed 116%CPU (0avgtext+0avgdata 266016maxresident)k
0inputs+0outputs (0major+65363minor)pagefaults 0swaps
3 == Mod(2,2^66-6437)^56336223980334007050
factorint(exponent)=[2, 1; 3, 1; 5, 2; 11, 1; 362339, 1; 94229895343, 1]
0.35user 0.16system 0:00.45elapsed 114%CPU (0avgtext+0avgdata 318908maxresident)k
0inputs+0outputs (0major+78688minor)pagefaults 0swaps
3 == Mod(2,2^67-405)^53265828438503122854
factorint(exponent)=[2, 1; 3, 1; 689761, 1; 12870600212369, 1]
0.39user 0.17system 0:00.49elapsed 114%CPU (0avgtext+0avgdata 379332maxresident)k
0inputs+0outputs (0major+93914minor)pagefaults 0swaps
3 == Mod(2,2^68-149)^156775921221167323110
factorint(exponent)=[2, 1; 3, 3; 5, 1; 7, 1; 71, 2; 133873, 1; 122915843, 1]
0.32user 0.24system 0:00.49elapsed 115%CPU (0avgtext+0avgdata 384972maxresident)k
0inputs+0outputs (0major+95354minor)pagefaults 0swaps
3 == Mod(2,2^69-165)^270020880029729020570
factorint(exponent)=[2, 1; 5, 1; 7, 1; 19, 1; 203023218067465429, 1]
0.41user 0.19system 0:00.52elapsed 115%CPU (0avgtext+0avgdata 431912maxresident)k
0inputs+0outputs (0major+107058minor)pagefaults 0swaps
3 == Mod(2,2^70-15581)^954428917033223068770
factorint(exponent)=[2, 1; 3, 2; 5, 1; 1471, 1; 100943, 1; 71418742501, 1]
0.49user 0.20system 0:00.61elapsed 114%CPU (0avgtext+0avgdata 488940maxresident)k
0inputs+0outputs (0major+121228minor)pagefaults 0swaps
3 == Mod(5,2^71-2505)^1880039997353741944628
factorint(exponent)=[2, 2; 1301, 1; 12072019, 1; 29926084003, 1]
0.50user 0.30system 0:00.71elapsed 113%CPU (0avgtext+0avgdata 599376maxresident)k
0inputs+0outputs (0major+148912minor)pagefaults 0swaps
3 == Mod(5,2^72-929)^2681117309427871672336
factorint(exponent)=[2, 4; 11, 1; 486767, 1; 2929723, 1; 10682071, 1]
0.54user 0.28system 0:00.72elapsed 114%CPU (0avgtext+0avgdata 611688maxresident)k
0inputs+0outputs (0major+152070minor)pagefaults 0swaps
3 == Mod(2,2^73-6669)^2506237152058568467608
factorint(exponent)=[2, 3; 3, 1; 1109, 1; 1567, 1; 60091131159539, 1]
0.62user 0.31system 0:00.82elapsed 113%CPU (0avgtext+0avgdata 694884maxresident)k
0inputs+0outputs (0major+172853minor)pagefaults 0swaps
3 == Mod(13,2^74-545)^17567232616042823251870
factorint(exponent)=[2, 1; 5, 1; 17, 1; 31, 1; 157, 1; 10163, 1; 611903, 1; 3414197, 1]
0.68user 0.34system 0:00.89elapsed 114%CPU (0avgtext+0avgdata 753780maxresident)k
0inputs+0outputs (0major+187538minor)pagefaults 0swaps
3 == Mod(11,2^75-2889)^7317718795172181166154
factorint(exponent)=[2, 1; 19, 1; 151, 1; 239, 1; 277, 1; 19263602251811, 1]
0.73user 0.36system 0:00.95elapsed 114%CPU (0avgtext+0avgdata 812504maxresident)k
0inputs+0outputs (0major+202287minor)pagefaults 0swaps
3 == Mod(2,2^76-557)^43758075884503382697006
factorint(exponent)=[2, 1; 3, 3; 32363, 1; 196991, 1; 127106950433, 1]
0.82user 0.44system 0:01.11elapsed 113%CPU (0avgtext+0avgdata 887152maxresident)k
0inputs+0outputs (0major+220925minor)pagefaults 0swaps
3 == Mod(5,2^77-7569)^37163653774355193209794
factorint(exponent)=[2, 1; 23, 1; 807905516833808548039, 1]
0.90user 0.44system 0:01.18elapsed 114%CPU (0avgtext+0avgdata 994192maxresident)k
0inputs+0outputs (0major+247697minor)pagefaults 0swaps
3 == Mod(2,2^78-1445)^257033104632679676284430
factorint(exponent)=[2, 1; 5, 1; 199, 1; 313, 1; 412659310341932789, 1]
1.03user 0.51system 0:01.35elapsed 113%CPU (0avgtext+0avgdata 1168036maxresident)k
0inputs+0outputs (0major+291170minor)pagefaults 0swaps
3 == Mod(5,2^79-2001)^490682977292367211573458
factorint(exponent)=[2, 1; 3, 3; 4051, 1; 2243081165566651177, 1]
1.12user 0.57system 0:01.49elapsed 113%CPU (0avgtext+0avgdata 1273796maxresident)k
0inputs+0outputs (0major+317638minor)pagefaults 0swaps
3 == Mod(2,2^80-5837)^1014366753168941550129886
factorint(exponent)=[2, 1; 3251, 1; 13093, 1; 1272883, 1; 9360959947, 1]
1.09user 0.62system 0:01.51elapsed 114%CPU (0avgtext+0avgdata 1299668maxresident)k
0inputs+0outputs (0major+324157minor)pagefaults 0swaps
3 == Mod(7,2^81-2673)^1694863707195313072022680
factorint(exponent)=[2, 3; 5, 1; 41, 1; 5857, 1; 301187671, 1; 585839321, 1]
1.41user 0.63system 0:01.81elapsed 112%CPU (0avgtext+0avgdata 1544920maxresident)k
0inputs+0outputs (0major+385472minor)pagefaults 0swaps
3 == Mod(7,2^82-3185)^4759353077271028007233768
factorint(exponent)=[2, 3; 17, 1; 59219, 1; 83133437, 1; 7108405771, 1]
1.46user 0.62system 0:01.83elapsed 113%CPU (0avgtext+0avgdata 1581068maxresident)k
0inputs+152outputs (0major+394484minor)pagefaults 0swaps
3 == Mod(2,2^83-2925)^6709612180365514029709436
factorint(exponent)=[2, 2; 317671, 1; 5280315310781841929, 1]
1.58user 0.82system 0:02.12elapsed 113%CPU (0avgtext+0avgdata 1849100maxresident)k
0inputs+0outputs (0major+461498minor)pagefaults 0swaps
3 == Mod(13,2^84-5297)^11266308229660087102049296
factorint(exponent)=[2, 4; 227, 1; 1181, 1; 2626551322345937863, 1]
1.73user 0.82system 0:02.27elapsed 112%CPU (0avgtext+0avgdata 1897288maxresident)k
0inputs+0outputs (0major+473615minor)pagefaults 0swaps
3 == Mod(2,2^85-4053)^30301490486443603719664106
factorint(exponent)=[2, 1; 7, 1; 2179, 1; 18503789, 1; 53680686093509, 1]
1.98user 1.04system 0:02.70elapsed 112%CPU (0avgtext+0avgdata 2261584maxresident)k
0inputs+240outputs (0major+564703minor)pagefaults 0swaps
3 == Mod(5,2^86-2897)^63135876767966157148375540
factorint(exponent)=[2, 2; 5, 1; 79, 1; 1741, 1; 22951990623738051443, 1]
2.17user 1.01system 0:02.82elapsed 112%CPU (0avgtext+0avgdata 2385012maxresident)k
0inputs+0outputs (0major+595547minor)pagefaults 0swaps
3 == Mod(19,2^87-129)^79192942555345452008981762
factorint(exponent)=[2, 1; 11, 1; 41, 1; 313, 1; 18149, 1; 91297, 1; 169288087079, 1]
2.32user 1.10system 0:03.03elapsed 113%CPU (0avgtext+0avgdata 2593120maxresident)k
0inputs+0outputs (0major+647612minor)pagefaults 0swaps
3 == Mod(2,2^88-797)^278879419649757787823965360
factorint(exponent)=[2, 4; 5, 1; 15277, 1; 607513433, 1; 375605994787, 1]
2.58user 1.31system 0:03.48elapsed 112%CPU (0avgtext+0avgdata 2971340maxresident)k
0inputs+272outputs (0major+742209minor)pagefaults 0swaps
3 == Mod(2,2^89-3285)^163676117179618474955471108
factorint(exponent)=[2, 2; 7, 1; 43, 1; 79, 1; 307, 1; 5605228999296948809, 1]
2.80user 0.97system 0:03.30elapsed 114%CPU (0avgtext+0avgdata 2108960maxresident)k
0inputs+0outputs (0major+526580minor)pagefaults 0swaps
3 == Mod(5,2^90-41)^1125499857123814904950464106
factorint(exponent)=[2, 1; 7, 1; 127, 1; 969677, 1; 694487347, 1; 939987883, 1]
2.93user 0.92system 0:03.36elapsed 114%CPU (0avgtext+0avgdata 2109260maxresident)k
0inputs+392outputs (0major+526676minor)pagefaults 0swaps
3 == Mod(5,2^91-81)^1315777956547997106056330880
factorint(exponent)=[2, 7; 3, 1; 5, 1; 13, 1; 881, 1; 59835939844181887663, 1]
3.35user 0.91system 0:03.71elapsed 115%CPU (0avgtext+0avgdata 2108932maxresident)k
0inputs+0outputs (0major+526737minor)pagefaults 0swaps
3 == Mod(2,2^92-677)^4311137531217078783707848286
factorint(exponent)=[2, 1; 17, 1; 20857, 1; 208891, 1; 162453539, 1; 179148103, 1]
3.61user 0.98system 0:03.98elapsed 115%CPU (0avgtext+0avgdata 2192392maxresident)k
0inputs+296outputs (0major+547537minor)pagefaults 0swaps
3 == Mod(5,2^93-8985)^3798999840122032920856022330
factorint(exponent)=[2, 1; 5, 1; 208189, 1; 446881, 1; 23661929, 1; 172571653, 1]
3.99user 1.13system 0:04.45elapsed 115%CPU (0avgtext+0avgdata 2560960maxresident)k
0inputs+0outputs (0major+639722minor)pagefaults 0swaps
3 == Mod(5,2^94-9281)^6701672431325198447984332156
factorint(exponent)=[2, 2; 2837, 1; 717463, 1; 823122285357856469, 1]
4.52user 1.25system 0:05.06elapsed 114%CPU (0avgtext+0avgdata 2735012maxresident)k
0inputs+368outputs (0major+683249minor)pagefaults 0swaps
3 == Mod(2,2^95-7341)^4395551769464885987719469266
factorint(exponent)=[2, 1; 13, 1; 43, 1; 24874150387, 1; 158060495895101, 1]
4.97user 1.14system 0:05.33elapsed 114%CPU (0avgtext+0avgdata 2822708maxresident)k
0inputs+456outputs (0major+705221minor)pagefaults 0swaps
3 == Mod(5,2^96-3449)^53826238579492652144060964768
factorint(exponent)=[2, 5; 3, 1; 7, 1; 19, 1; 83, 1; 1151383, 1; 44113676371524359, 1]
5.52user 1.31system 0:06.00elapsed 113%CPU (0avgtext+0avgdata 2995760maxresident)k
0inputs+288outputs (0major+748562minor)pagefaults 0swaps
3 == Mod(2,2^97-6909)^88724151440960684111963858630
factorint(exponent)=[2, 1; 5, 1; 19, 1; 6269, 1; 32561, 1; 2287664060197177553, 1]
5.89user 0.98system 0:05.95elapsed 115%CPU (0avgtext+0avgdata 2166008maxresident)k
0inputs+0outputs (0major+541116minor)pagefaults 0swaps
3 == Mod(2,2^98-12461)^168597215997675608562005087868
factorint(exponent)=[2, 2; 3, 1; 1609, 1; 1097975393, 1; 7952808073357997, 1]
6.64user 1.07system 0:06.71elapsed 115%CPU (0avgtext+0avgdata 2307084maxresident)k
0inputs+424outputs (0major+576400minor)pagefaults 0swaps
3 == Mod(5,2^99-3345)^407746639973662496036297877314
factorint(exponent)=[2, 1; 1770997, 1; 115117823455845068070781, 1]
6.62user 1.23system 0:06.75elapsed 116%CPU (0avgtext+0avgdata 2555980maxresident)k
0inputs+0outputs (0major+638579minor)pagefaults 0swaps
3 == Mod(2,2^100-12389)^535663980570432192372869128374
factorint(exponent)=[2, 1; 3, 1; 13, 1; 54367, 1; 175081, 1; 43870097, 1; 16445794507, 1]
7.95user 1.19system 0:07.95elapsed 114%CPU (0avgtext+0avgdata 2860936maxresident)k
0inputs+192outputs (0major+714890minor)pagefaults 0swaps
3 == Mod(5,2^101-9009)^17347828494833450195324437772
factorint(exponent)=[2, 2; 7, 2; 11, 1; 2441, 1; 657075779, 1; 5016642180283, 1]
8.44user 1.33system 0:08.48elapsed 115%CPU (0avgtext+0avgdata 3117208maxresident)k
0inputs+264outputs (0major+779007minor)pagefaults 0swaps
3 == Mod(5,2^102-4097)^4798445382602975811904938269060
factorint(exponent)=[2, 2; 5, 1; 13, 1; 18455559163857599276557454881, 1]
8.86user 1.05system 0:08.47elapsed 116%CPU (0avgtext+0avgdata 2280372maxresident)k
0inputs+0outputs (0major+569839minor)pagefaults 0swaps
3 == Mod(29,2^103-10329)^6168556240973957216955024346114
factorint(exponent)=[2, 1; 7, 1; 29, 1; 221021, 1; 17819778281, 1; 3857639673319, 1]
10.45user 1.21system 0:10.10elapsed 115%CPU (0avgtext+0avgdata 2847480maxresident)k
0inputs+384outputs (0major+711736minor)pagefaults 0swaps
3 == Mod(2,2^104-15773)^17782830268554088077904531357932
factorint(exponent)=[2, 2; 3, 1; 61, 1; 67, 1; 251, 1; 1444578936399747074657453, 1]
11.14user 1.24system 0:10.68elapsed 115%CPU (0avgtext+0avgdata 3074420maxresident)k
0inputs+0outputs (0major+768495minor)pagefaults 0swaps
3 == Mod(2,2^105-16413)^16115421439348366550817028756584
factorint(exponent)=[2, 3; 3, 1; 7, 1; 13, 1; 37, 1; 4217, 1; 324773, 1; 145614221020467053, 1]
12.40user 0.95system 0:11.50elapsed 116%CPU (0avgtext+0avgdata 2329484maxresident)k
0inputs+256outputs (0major+582243minor)pagefaults 0swaps
3 == Mod(2,2^106-2981)^1663625521105566360113153403190
factorint(exponent)=[2, 1; 5, 1; 13, 1; 19, 1; 37, 1; 1084987, 1; 16777697589000409183, 1]
12.73user 1.39system 0:12.16elapsed 116%CPU (0avgtext+0avgdata 2873584maxresident)k
0inputs+0outputs (0major+718300minor)pagefaults 0swaps
3 == Mod(5,2^107-1185)^148595429952104824289124484463186
factorint(exponent)=[2, 1; 67, 1; 1319, 1; 3803, 1; 179652066497, 1; 1230544479551, 1]
14.69user 0.99system 0:13.51elapsed 116%CPU (0avgtext+0avgdata 2246460maxresident)k
0inputs+368outputs (0major+561583minor)pagefaults 0swaps
3 == Mod(5,2^108-2153)^230528158534674188995399023798304
factorint(exponent)=[2, 5; 7, 1; 251, 1; 26471843, 1; 154888103759402280647, 1]
15.23user 1.23system 0:14.07elapsed 116%CPU (0avgtext+0avgdata 2694496maxresident)k
0inputs+568outputs (0major+673667minor)pagefaults 0swaps
3 == Mod(5,2^109-69345)^623697028155193506416531892073408
factorint(exponent)=[2, 6; 13, 1; 29, 1; 149, 1; 677, 1; 109614209, 1; 2337817251803023, 1]
18.58user 1.05system 0:17.05elapsed 115%CPU (0avgtext+0avgdata 2229464maxresident)k
0inputs+360outputs (0major+557452minor)pagefaults 0swaps
3 == Mod(5,2^110-4097)^1132116849935607000783090966078180
factorint(exponent)=[2, 2; 3, 1; 5, 1; 197, 1; 95779767338037817325134599499, 1]
19.44user 1.29system 0:17.90elapsed 115%CPU (0avgtext+0avgdata 2843380maxresident)k
0inputs+0outputs (0major+710979minor)pagefaults 0swaps
3 == Mod(2,2^111-429)^491009568237567610896082707851362
factorint(exponent)=[2, 1; 937, 1; 867271, 1; 160511802463, 1; 1882168810481, 1]
20.08user 1.09system 0:18.13elapsed 116%CPU (0avgtext+0avgdata 2366292maxresident)k
0inputs+400outputs (0major+591771minor)pagefaults 0swaps
3 == Mod(2,2^112-3989)^2264975387051584239592614382764928
factorint(exponent)=[2, 7; 544403, 1; 3709258957, 1; 8762859601804081, 1]
23.57user 1.41system 0:21.67elapsed 115%CPU (0avgtext+0avgdata 2803112maxresident)k
0inputs+480outputs (0major+700985minor)pagefaults 0swaps
3 == Mod(2,2^113-28845)^9225070107102916109941911304365198
factorint(exponent)=[2, 1; 3, 2; 251, 1; 3943, 1; 15672996149, 1; 33040350424395823, 1]
25.91user 1.34system 0:23.64elapsed 115%CPU (0avgtext+0avgdata 3120672maxresident)k
0inputs+512outputs (0major+780499minor)pagefaults 0swaps
3 == Mod(2,2^114-30557)^18353892459375621373316797306804970
factorint(exponent)=[2, 1; 5, 1; 13, 1; 223, 1; 633111157619027988041283108203, 1]
34.99user 1.30system 0:32.36elapsed 112%CPU (0avgtext+0avgdata 2581888maxresident)k
0inputs+0outputs (0major+645831minor)pagefaults 0swaps
3 == Mod(2,2^115-5589)^13270269505191833187742214338782996
factorint(exponent)=[2, 2; 3, 1; 13, 1; 53831, 1; 17324580829, 1; 91213676604033209, 1]
31.03user 1.31system 0:28.06elapsed 115%CPU (0avgtext+0avgdata 2766792maxresident)k
0inputs+456outputs (0major+692082minor)pagefaults 0swaps
3 == Mod(2,2^116-5909)^26821548407168524537473225315804828
factorint(exponent)=[2, 2; 3, 1; 43, 1; 10721759, 1; 315964939, 1; 15343668587425483, 1]
31.66user 1.11system 0:28.17elapsed 116%CPU (0avgtext+0avgdata 2470628maxresident)k
0inputs+368outputs (0major+618108minor)pagefaults 0swaps
3 == Mod(5,2^117-5169)^91857591711462590934332123454700808
factorint(exponent)=[2, 3; 19, 1; 10357, 1; 842590247, 1; 69250204943077382201, 1]
34.66user 0.96system 0:30.66elapsed 116%CPU (0avgtext+0avgdata 2265444maxresident)k
0inputs+736outputs (0major+566842minor)pagefaults 0swaps
3 == Mod(17,2^118-13625)^73585064173241425257344902191472158
factorint(exponent)=[2, 1; 3, 1; 7, 1; 37, 1; 47352036147517004670106114666327, 1]
40.98user 1.09system 0:36.62elapsed 114%CPU (0avgtext+0avgdata 2124252maxresident)k
0inputs+0outputs (0major+531683minor)pagefaults 0swaps
3 == Mod(2,2^119-3981)^429130774047913980868342343282497890
factorint(exponent)=[2, 1; 3, 1; 5, 1; 79, 1; 7069, 1; 25614349575755914178584593413, 1]
42.28user 1.31system 0:37.66elapsed 115%CPU (0avgtext+0avgdata 2993420maxresident)k
0inputs+0outputs (0major+749083minor)pagefaults 0swaps
3 == Mod(13,2^120-8417)^1313990073557076048490707788694201062
factorint(exponent)=[2, 1; 13, 1; 956346610829, 1; 52844940505813866956603, 1]
44.07user 1.37system 0:39.04elapsed 116%CPU (0avgtext+0avgdata 3102212maxresident)k
0inputs+1600outputs (0major+776289minor)pagefaults 0swaps
3 == Mod(2,2^121-20565)^891871230998002016261457509745081532
factorint(exponent)=[2, 2; 7, 1; 47, 1; 71, 1; 379, 1; 25185391555474485498898559203, 1]
52.31user 1.50system 0:46.82elapsed 114%CPU (0avgtext+0avgdata 3132008maxresident)k
0inputs+0outputs (0major+783871minor)pagefaults 0swaps
3 == Mod(2,2^122-19277)^1100236326103266449815876150964468916
factorint(exponent)=[2, 2; 3, 3; 31, 1; 211, 1; 950019757411513, 1; 1639401914183819, 1]
54.74user 1.16system 0:48.36elapsed 115%CPU (0avgtext+0avgdata 2803836maxresident)k
0inputs+672outputs (0major+701849minor)pagefaults 0swaps
3 == Mod(2,2^123-48285)^503319655878932614858966751006092224
factorint(exponent)=[2, 6; 3, 1; 7, 1; 3028112419, 1; 123672354179062850377009, 1]
80.36user 1.27system 1:13.46elapsed 111%CPU (0avgtext+0avgdata 2512824maxresident)k
0inputs+896outputs (0major+629245minor)pagefaults 0swaps
3 == Mod(2,2^124-6653)^17793882113984412699645954155332886522
factorint(exponent)=[2, 1; 7, 1; 11, 1; 12523792925753, 1; 9226014014831664677881, 1]
69.58user 1.06system 1:01.77elapsed 114%CPU (0avgtext+0avgdata 2202616maxresident)k
0inputs+2240outputs (0major+551676minor)pagefaults 0swaps
3 == Mod(2,2^125-22293)^463377359957643002943863128095357554
factorint(exponent)=[2, 1; 29327, 1; 431447, 1; 18310901334293669364380833, 1]
84.07user 1.21system 1:15.64elapsed 112%CPU (0avgtext+0avgdata 2407132maxresident)k
0inputs+0outputs (0major+602967minor)pagefaults 0swaps
3 == Mod(2,2^126-21005)^8011755252615557100952441042191975706
factorint(exponent)=[2, 1; 317, 1; 410036477, 1; 50931618721, 1; 605101797718277, 1]
84.59user 1.44system 1:15.61elapsed 113%CPU (0avgtext+0avgdata 3159440maxresident)k
0inputs+1360outputs (0major+791163minor)pagefaults 0swaps
3 == Mod(5,2^127-2721)^81656661954373145536993505218315486726
factorint(exponent)=[2, 1; 31, 1; 5923223, 1; 141430492789, 1; 1572167429804084959, 1]
120.21user 1.35system 1:50.23elapsed 110%CPU (0avgtext+0avgdata 2641420maxresident)k
0inputs+648outputs (0major+661767minor)pagefaults 0swaps
3 == Mod(5,2^128-15449)^301455854865664820683379090722552654066
factorint(exponent)=[2, 1; 61, 1; 67, 1; 149, 1; 52957, 1; 7055157368123, 1; 662479954148381, 1]
120.91user 1.25system 1:49.83elapsed 111%CPU (0avgtext+0avgdata 2353188maxresident)k
0inputs+560outputs (0major+589741minor)pagefaults 0swaps
3 == Mod(11,2^129-12273)^26513363853033712985790520054756212864
factorint(exponent)=[2, 7; 3, 1; 7, 1; 3650068003770197, 1; 2702306536127064649, 1]
125.57user 1.29system 1:53.48elapsed 111%CPU (0avgtext+0avgdata 2608132maxresident)k
0inputs+1416outputs (0major+653581minor)pagefaults 0swaps
3 == Mod(2,2^130-4085)^1039632185080120342931721227907701875222
factorint(exponent)=[2, 1; 11, 1; 97, 1; 831046549, 1; 586219081286579408599729117, 1]
145.66user 1.33system 2:12.43elapsed 110%CPU (0avgtext+0avgdata 2735048maxresident)k
0inputs+2200outputs (0major+685443minor)pagefaults 0swaps
3 == Mod(2,2^131-6021)^1104175402657827701404051700190552168882
factorint(exponent)=[2, 1; 3, 2; 59, 1; 3167, 1; 4591, 1; 71508586814213682883260670163, 1]
178.39user 1.45system 2:44.09elapsed 109%CPU (0avgtext+0avgdata 3086060maxresident)k
0inputs+0outputs (0major+773292minor)pagefaults 0swaps
3 == Mod(2,2^132-27653)^4235197862335991311558063881982059390800
factorint(exponent)=[2, 4; 5, 2; 2517797, 1; 7968299, 1; 527748952084509884089259, 1]
171.50user 1.44system 2:35.78elapsed 111%CPU (0avgtext+0avgdata 3031384maxresident)k
0inputs+0outputs (0major+759760minor)pagefaults 0swaps
3 == Mod(2,2^133-18429)^5586215808238013035917148121545474095132
factorint(exponent)=[2, 2; 3, 1; 7747807, 1; 766812160267, 1; 78355354217242314169, 1]
173.08user 1.42system 2:35.98elapsed 111%CPU (0avgtext+0avgdata 2838480maxresident)k
0inputs+888outputs (0major+711693minor)pagefaults 0swaps
3 == Mod(2,2^134-197)^6433633915115482167808844708030261669742
factorint(exponent)=[2, 1; 3, 2; 13, 1; 232738579, 1; 118133238367877306031736792697, 1]
185.98user 1.38system 2:47.08elapsed 112%CPU (0avgtext+0avgdata 2570772maxresident)k
0inputs+0outputs (0major+644820minor)pagefaults 0swaps
3 == Mod(13,2^135-3369)^25935550529012014495113709420750849225748
factorint(exponent)=[2, 2; 3360857, 1; 39617838129834409, 1; 48696155139566149, 1]
204.39user 1.37system 3:03.78elapsed 111%CPU (0avgtext+0avgdata 2772832maxresident)k
0inputs+1032outputs (0major+695545minor)pagefaults 0swaps
3 == Mod(2,2^136-17309)^72874776934573492209807707865885281334792
factorint(exponent)=[2, 3; 3, 1; 97, 1; 12541741, 1; 2495953180630458282366779493079, 1]
217.58user 1.25system 3:14.85elapsed 112%CPU (0avgtext+0avgdata 2562420maxresident)k
0inputs+0outputs (0major+643080minor)pagefaults 0swaps
3 == Mod(5,2^137-849)^143384329507302189994196804465470190324030
factorint(exponent)=[2, 1; 5, 1; 607, 1; 256567, 1; 372131, 1; 365791733, 1; 676367087876021669, 1]
225.85user 1.69system 3:21.35elapsed 113%CPU (0avgtext+0avgdata 2981800maxresident)k
0inputs+416outputs (0major+748015minor)pagefaults 0swaps
3 == Mod(5,2^138-11681)^135398833372127475050601749323659752339480
factorint(exponent)=[2, 3; 5, 1; 909547, 1; 13146379, 1; 116502386309, 1; 2429902320309811, 1]
318.15user 1.33system 4:51.05elapsed 109%CPU (0avgtext+0avgdata 2228888maxresident)k
0inputs+480outputs (0major+559878minor)pagefaults 0swaps
3 == Mod(5,2^139-18465)^486490807000372843137944530777868995823230
factorint(exponent)=[2, 1; 5, 1; 29, 1; 14957, 1; 1176543932686609, 1; 95328771845948296699, 1]
263.16user 1.79system 3:53.65elapsed 113%CPU (0avgtext+0avgdata 2943388maxresident)k
0inputs+2696outputs (0major+738656minor)pagefaults 0swaps
3 == Mod(5,2^140-10073)^753449737686794318347673565816021305641612
factorint(exponent)=[2, 2; 17, 1; 11080143201276387034524611262000313318259, 1]
320.05user 1.27system 4:47.18elapsed 111%CPU (0avgtext+0avgdata 2392172maxresident)k
0inputs+0outputs (0major+601083minor)pagefaults 0swaps
3 == Mod(13,2^141-30033)^706761528453203791570069209404110365940280
factorint(exponent)=[2, 3; 5, 1; 11, 1; 13, 1; 23, 1; 39581, 1; 734889983, 1; 184688539286061495017681, 1]
364.73user 1.53system 5:29.19elapsed 111%CPU (0avgtext+0avgdata 2467368maxresident)k
0inputs+896outputs (0major+620007minor)pagefaults 0swaps
3 == Mod(5,2^142-7217)^5013859184617913823583828864342477645078506
factorint(exponent)=[2, 1; 3, 1; 313, 1; 991, 1; 58591109299469, 1; 45980233201102710499013, 1]
413.56user 1.32system 6:14.63elapsed 110%CPU (0avgtext+0avgdata 2146264maxresident)k
0inputs+2512outputs (0major+539886minor)pagefaults 0swaps
3 == Mod(2,2^143-8205)^10758282372652498190895453147201590480865322
factorint(exponent)=[2, 1; 5407, 1; 418799, 1; 2375477590483091286880370830520677, 1]
438.76user 1.51system 6:36.27elapsed 111%CPU (0avgtext+0avgdata 2239828maxresident)k
0inputs+0outputs (0major+563447minor)pagefaults 0swaps
3 == Mod(11,2^144-19217)^18136485472053731277129103473044948464360832
factorint(exponent)=[2, 7; 7, 1; 2904509597094431, 1; 6969029563651283577597107, 1]
478.09user 1.73system 7:11.94elapsed 111%CPU (0avgtext+0avgdata 2721060maxresident)k
0inputs+6176outputs (0major+684022minor)pagefaults 0swaps
3 == Mod(2,2^145-6549)^19193382622327304808212115772699793482964712
factorint(exponent)=[2, 3; 3, 1; 17, 1; 1789, 1; 1525963, 1; 17232052695609829355609537422577, 1]
498.55user 1.88system 7:28.45elapsed 111%CPU (0avgtext+0avgdata 3165292maxresident)k
0inputs+0outputs (0major+795200minor)pagefaults 0swaps
3 == Mod(5,2^146-69977)^81136491107602700842902129502715725119498816
factorint(exponent)=[2, 6; 3, 1; 47, 1; 228202627, 1; 1963601630863, 1; 20065182381516311009, 1]
684.88user 1.87system 10:30.36elapsed 108%CPU (0avgtext+0avgdata 2869964maxresident)k
0inputs+6192outputs (0major+721606minor)pagefaults 0swaps
3 == Mod(5,2^147-2601)^71789673625208212621624791646549484326897726
factorint(exponent)=[2, 1; 13, 1; 19, 1; 18658511373200143, 1; 7788575575792860744674903, 1]
593.14user 1.95system 8:53.72elapsed 111%CPU (0avgtext+0avgdata 3108220maxresident)k
0inputs+6056outputs (0major+781349minor)pagefaults 0swaps
3 == Mod(5,2^148-8273)^50680043060092808701881312386333082863090478
factorint(exponent)=[2, 1; 3, 3; 29, 1; 8415703, 1; 50307727, 1; 76439902011177798062279393, 1]
643.69user 1.57system 9:38.28elapsed 111%CPU (0avgtext+0avgdata 2376804maxresident)k
0inputs+2064outputs (0major+598684minor)pagefaults 0swaps
3 == Mod(2,2^149-19725)^36917910872538532635674234759603673536266272
factorint(exponent)=[2, 5; 3, 1; 673, 1; 17453411, 1; 43282964225989, 1; 756403462658877221, 1]
783.89user 1.91system 11:52.98elapsed 110%CPU (0avgtext+0avgdata 2660528maxresident)k
0inputs+800outputs (0major+669882minor)pagefaults 0swaps
3 == Mod(2,2^150-21125)^984484090630038147144530524339500676825245406
factorint(exponent)=[2, 1; 23, 1; 31, 1; 1471, 1; 1330943, 1; 200019823, 1; 1762966293322639656161849, 1]
791.72user 1.90system 11:54.50elapsed 111%CPU (0avgtext+0avgdata 2750588maxresident)k
0inputs+1144outputs (0major+692496minor)pagefaults 0swaps
3 == Mod(7,2^151-11289)^1051895456009081668892980309647868002786911536
factorint(exponent)=[2, 4; 1279, 1; 70583, 1; 844351, 1; 862499628212025667912613624453, 1]
970.60user 1.99system 14:46.36elapsed 109%CPU (0avgtext+0avgdata 2748324maxresident)k
0inputs+0outputs (0major+692208minor)pagefaults 0swaps
3 == Mod(2,2^152-5837)^128146905736927695856778164313942398885687960
factorint(exponent)=[2, 3; 5, 1; 53, 1; 398855709904491863, 1; 151550177541568782550141, 1]
914.65user 1.79system 13:42.94elapsed 111%CPU (0avgtext+0avgdata 2173804maxresident)k
0inputs+6944outputs (0major+548859minor)pagefaults 0swaps
3 == Mod(7,2^153-9393)^4639762020257316827354738879296200902523043564
factorint(exponent)=[2, 2; 9433, 1; 297666553, 1; 3724222006289, 1; 110922660960476650331, 1]
877.67user 1.95system 12:57.84elapsed 113%CPU (0avgtext+0avgdata 2533712maxresident)k
0inputs+904outputs (0major+639013minor)pagefaults 0swaps
3 == Mod(2,2^154-22757)^5807548681804120373030170693771708717176845482
factorint(exponent)=[2, 1; 23, 1; 107, 1; 173059, 1; 114473505139753, 1; 59559642015935592500603, 1]
1318.28user 2.28system 20:09.98elapsed 109%CPU (0avgtext+0avgdata 2979220maxresident)k
0inputs+2712outputs (0major+750692minor)pagefaults 0swaps
3 == Mod(2,2^155-27285)^44642959619184238955083948495503302569840563208
factorint(exponent)=[2, 3; 11, 1; 67, 1; 70163, 1; 3538798903, 1; 11821506955681, 1; 2579637178663997, 1]
1522.62user 1.94system 23:24.09elapsed 108%CPU (0avgtext+0avgdata 2244120maxresident)k
0inputs+4056outputs (0major+567179minor)pagefaults 0swaps
3 == Mod(2,2^156-2453)^70136620714642942805621634227391716666861284528
factorint(exponent)=[2, 4; 717506059, 1; 513016237241, 1; 11908804633671536650317257, 1]
1339.69user 2.13system 20:10.59elapsed 110%CPU (0avgtext+0avgdata 2593496maxresident)k
0inputs+2960outputs (0major+654706minor)pagefaults 0swaps
3 == Mod(2,2^157-333)^87002346397511251232176644920738317479547794912
factorint(exponent)=[2, 5; 3, 2; 1299926171, 1; 232391259816334651499520527921587669, 1]
1294.10user 2.33system 19:13.73elapsed 112%CPU (0avgtext+0avgdata 2602664maxresident)k
0inputs+0outputs (0major+657325minor)pagefaults 0swaps
3 == Mod(7,2^158-665)^182480796806907714735290481048923599414476020478
factorint(exponent)=[2, 1; 3, 1; 7, 1; 8844313, 1; 1508967670723, 1; 325554602229005922952611241, 1]
1812.09user 2.19system 27:38.62elapsed 109%CPU (0avgtext+0avgdata 2651816maxresident)k
0inputs+3504outputs (0major+669945minor)pagefaults 0swaps
3 == Mod(2,2^159-11205)^466552766711386322489961642391521995329048691908
factorint(exponent)=[2, 2; 13, 1; 17, 1; 43, 1; 461, 1; 3121, 1; 8530713459044963180196679720047195739, 1]
2204.85user 2.13system 33:58.15elapsed 108%CPU (0avgtext+0avgdata 2408596maxresident)k
0inputs+0outputs (0major+609447minor)pagefaults 0swaps
3 == Mod(2,2^160-13709)^1335485952435768217718088954052210722007020353588
factorint(exponent)=[2, 2; 59, 1; 109, 1; 1100065931, 1; 34019106701, 1; 1387264277051115330580477, 1]
3457.25user 2.35system 54:36.96elapsed 105%CPU (0avgtext+0avgdata 2647924maxresident)k
0inputs+272outputs (0major+669548minor)pagefaults 0swaps
3 == Mod(2,2^161-765)^171898808420580521752530521885876470893162243990
factorint(exponent)=[2, 1; 3, 4; 5, 1; 17, 1; 79, 1; 307, 1; 8783, 1; 42845680081, 1; 1367802949049523490537573, 1]
2394.20user 2.66system 36:39.75elapsed 108%CPU (0avgtext+0avgdata 2846664maxresident)k
0inputs+2256outputs (0major+719577minor)pagefaults 0swaps
3 == Mod(2,2^162-317)^3002482768603228517519398698654856257195634973592
factorint(exponent)=[2, 3; 3, 2; 11, 1; 239, 1; 3896069656837, 1; 4071277716609662296107899250707, 1]
2078.29user 2.46system 31:07.49elapsed 111%CPU (0avgtext+0avgdata 2530764maxresident)k
0inputs+8368outputs (0major+664546minor)pagefaults 0swaps
3 == Mod(5,2^163-11121)^10684087790756998925000124909185601778357061683760
factorint(exponent)=[2, 4; 5, 1; 19, 1; 2939, 1; 54371, 1; 688671740505864769, 1; 63872614140476553133, 1]
2522.01user 2.49system 38:14.68elapsed 110%CPU (0avgtext+0avgdata 2438292maxresident)k
0inputs+2952outputs (0major+642373minor)pagefaults 0swaps
3 == Mod(5,2^164-4073)^8439159621888281801910369704619817881784084862874
factorint(exponent)=[2, 1; 3, 1; 7, 1; 37, 1; 5430604647289756629285952190875043681971740581, 1]
2665.79user 2.84system 40:20.52elapsed 110%CPU (0avgtext+0avgdata 3154448maxresident)k
0inputs+0outputs (0major+822051minor)pagefaults 0swaps
3 == Mod(2,2^165-19365)^27225968169621938145288547827988183146006493450616
factorint(exponent)=[2, 3; 463, 1; 1031, 1; 7129411611957486950246606763754544107297559, 1]
4109.65user 2.91system 1:04:05elapsed 106%CPU (0avgtext+0avgdata 3129196maxresident)k
0inputs+0outputs (0major+818912minor)pagefaults 0swaps
3 == Mod(2,2^166-5381)^44088229413381901148256779429605471236824712303158
factorint(exponent)=[2, 1; 668471, 1; 2140843181, 1; 2727031568588791, 1; 5648525187234771319, 1]
2965.05user 2.74system 44:39.42elapsed 110%CPU (0avgtext+0avgdata 2382868maxresident)k
0inputs+1368outputs (0major+633250minor)pagefaults 0swaps
3 == Mod(2,2^167-14061)^122348716904720859202965125342391113127413441683068
factorint(exponent)=[2, 2; 3, 1; 7, 1; 14766266387986004531, 1; 98639175661145485081804323217, 1]
6581.83user 2.95system 1:44:33elapsed 104%CPU (0avgtext+0avgdata 2636440maxresident)k
0inputs+15024outputs (0major+696593minor)pagefaults 0swaps
3 == Mod(5,2^168-12449)^72374226104375533065904519527074870070857118931264
factorint(exponent)=[2, 6; 883, 1; 5527, 1; 29077556647193, 1; 7968854187258646162281225977, 1]
4255.93user 2.90system 1:05:24elapsed 108%CPU (0avgtext+0avgdata 2788732maxresident)k
0inputs+3920outputs (0major+737794minor)pagefaults 0swaps
3 == Mod(2,2^169-20493)^578162407868669401637155191903951138407421676129912
factorint(exponent)=[2, 3; 3531751161859, 1; 150151328708131, 1; 136282655415132363823991, 1]
5509.77user 3.21system 1:25:52elapsed 106%CPU (0avgtext+0avgdata 2679332maxresident)k
0inputs+2512outputs (0major+712146minor)pagefaults 0swaps
3 == Mod(7,2^170-4025)^1079248361151365994481246829321081123908827419890426
factorint(exponent)=[2, 1; 379098172824277994099, 1; 1423441787005955956787515281487, 1]
4482.59user 3.46system 1:08:17elapsed 109%CPU (0avgtext+0avgdata 2796152maxresident)k
0inputs+21760outputs (0major+740983minor)pagefaults 0swaps
3 == Mod(2,2^171-47109)^5183060830438929948247994744072766737397035096544
factorint(exponent)=[2, 5; 3, 1; 79, 1; 683420468148593083893459222583434432673659691, 1]
6836.75user 3.41system 1:47:02elapsed 106%CPU (0avgtext+0avgdata 3025020maxresident)k
0inputs+0outputs (0major+802892minor)pagefaults 0swaps
3 == Mod(13,2^172-7697)^181653264190046088807546205123498400095781410764596
factorint(exponent)=[2, 2; 1723, 1; 40277, 1; 92431, 1; 7079835562822377020197243315005036949, 1]
8404.25user 3.49system 2:12:38elapsed 105%CPU (0avgtext+0avgdata 3114108maxresident)k
0inputs+0outputs (0major+826274minor)pagefaults 0swaps
3 == Mod(2,2^173-11373)^9244044478414429519350109232615627939758545196645600
factorint(exponent)=[2, 5; 5, 2; 19, 1; 5526691, 1; 734567155193, 1; 82588477999177, 1; 1813853830124503, 1]
9558.66user 3.46system 2:31:17elapsed 105%CPU (0avgtext+0avgdata 2255624maxresident)k
0inputs+6368outputs (0major+612339minor)pagefaults 0swaps
3 == Mod(5,2^174-9881)^1238320605833529960203720291903480523951768078301930
factorint(exponent)=[2, 1; 5, 1; 19, 1; 67455217, 1; 96619315194079835546668594092540921120091, 1]
8466.69user 3.89system 2:12:29elapsed 106%CPU (0avgtext+0avgdata 3147032maxresident)k
0inputs+0outputs (0major+837179minor)pagefaults 0swaps
3 == Mod(5,2^175-12345)^10915342791969484189440088949507388006344308011560346
factorint(exponent)=[2, 1; 3, 1; 17, 1; 3216905119149690834487, 1; 33265875325361813738165924729, 1]
6370.61user 3.69system 1:36:53elapsed 109%CPU (0avgtext+0avgdata 2647096maxresident)k
0inputs+18504outputs (0major+713363minor)pagefaults 0swaps
3 == Mod(2,2^176-533)^37729215324471733130806444110992016227888875832313752
factorint(exponent)=[2, 3; 30451763, 1; 1083881251, 1; 142887303664552198195436994153836363, 1]
6562.33user 4.07system 1:39:21elapsed 110%CPU (0avgtext+0avgdata 2712264maxresident)k
0inputs+0outputs (0major+733869minor)pagefaults 0swaps
3 == Mod(2,2^177-53853)^62868859648544212283209259351230463895996637515212828
factorint(exponent)=[2, 2; 23, 1; 25316885947, 1; 26992149489611628997065248973988889184547, 1]
15826.31user 3.95system 4:13:01elapsed 104%CPU (0avgtext+0avgdata 2744256maxresident)k
0inputs+0outputs (0major+743109minor)pagefaults 0swaps
17267.37user 3.81system 4:37:04elapsed 103%CPU (0avgtext+0avgdata 1446156maxresident)k
0inputs+0outputs (0major+418506minor)pagefaults 0swaps
3 == Mod(5,2^178-5537)^43570091241431737689487988896705817947781902357115512
factorint(exponent)=[2, 3; 4021, 1; 7817, 1; 1918859, 1; 90298645097497396603069710490531371953, 1]
9760.74user 4.13system 2:31:06elapsed 107%CPU (0avgtext+0avgdata 2255820maxresident)k
0inputs+0outputs (0major+626794minor)pagefaults 0swaps
11035.99user 3.61system 2:52:22elapsed 106%CPU (0avgtext+0avgdata 1345896maxresident)k
0inputs+0outputs (0major+399297minor)pagefaults 0swaps
3 == Mod(5,2^179-4521)^755586999480768339690723753495093812342398349137987612
factorint(exponent)=[2, 2; 1997, 1; 2927, 1; 3467, 1; 542761, 1; 17173595230360111087469172397655565551, 1]
11193.19user 4.37system 2:54:07elapsed 107%CPU (0avgtext+0avgdata 2696708maxresident)k
0inputs+0outputs (0major+737976minor)pagefaults 0swaps
14847.01user 6.47system 3:54:01elapsed 105%CPU (0avgtext+0avgdata 1571244maxresident)k
0inputs+0outputs (0major+456680minor)pagefaults 0swaps
3 == Mod(2,2^180-5309)^229349150013816149385301400692410517545874117613598032
factorint(exponent)=[2, 4; 11, 1; 733, 1; 787, 1; 1531, 1; 1374617, 1; 15568877, 1; 73924861, 1; 1009817423, 1; 923545284341, 1]
11039.55user 4.96system 2:50:38elapsed 107%CPU (0avgtext+0avgdata 3004548maxresident)k
0inputs+640outputs (0major+816039minor)pagefaults 0swaps
15021.99user 6.70system 3:55:55elapsed 106%CPU (0avgtext+0avgdata 1653572maxresident)k
0inputs+640outputs (0major+478230minor)pagefaults 0swaps
3 == Mod(5,2^181-20265)^883452717652916421321357350952679011915165507683448764
factorint(exponent)=[2, 2; 2741, 1; 25111, 1; 16878286499, 1; 72348130901, 1; 2627813902406985915982459, 1]
12376.81user 4.82system 3:11:54elapsed 107%CPU (0avgtext+0avgdata 2777612maxresident)k
0inputs+9952outputs (0major+760957minor)pagefaults 0swaps
16557.43user 7.06system 4:20:24elapsed 106%CPU (0avgtext+0avgdata 1234540maxresident)k
504inputs+9952outputs (0major+375165minor)pagefaults 0swaps
3 == Mod(5,2^182-12761)^2940955926762900771114669938843929347528929958621267944
factorint(exponent)=[2, 3; 7, 2; 7927, 1; 2138212547, 1; 8226629771667661, 1; 53804768164048682040173, 1]
11028.55user 5.13system 2:48:22elapsed 109%CPU (0avgtext+0avgdata 2865248maxresident)k
0inputs+5152outputs (0major+784260minor)pagefaults 0swaps
13859.37user 8.02system 3:34:13elapsed 107%CPU (0avgtext+0avgdata 1448120maxresident)k
8inputs+5152outputs (1major+430001minor)pagefaults 0swaps
3 == Mod(5,2^183-6561)^2630864566241048427468620433973255779070317387806305088
factorint(exponent)=[2, 6; 101, 1; 941, 1; 432521320772260200115710001797457113750630877037, 1]
14316.81user 5.23system 3:42:02elapsed 107%CPU (0avgtext+0avgdata 2842120maxresident)k
0inputs+0outputs (0major+779776minor)pagefaults 0swaps
15788.10user 6.28system 4:06:08elapsed 106%CPU (0avgtext+0avgdata 1272124maxresident)k
0inputs+0outputs (0major+387308minor)pagefaults 0swaps
3 == Mod(2,2^184-23933)^19287869309142035564100960105386017663011921200060083904
factorint(exponent)=[2, 6; 301372957955344305689077501646656525984561268750938811, 1]
17098.96user 5.48system 4:27:09elapsed 106%CPU (0avgtext+0avgdata 2669900maxresident)k
0inputs+0outputs (0major+741095minor)pagefaults 0swaps
17200.20user 5.29system 4:28:51elapsed 106%CPU (0avgtext+0avgdata 1619472maxresident)k
0inputs+0outputs (0major+478474minor)pagefaults 0swaps
3 == Mod(5,2^185-4089)^1792742335882301273918199676217897062270271691746080814
factorint(exponent)=[2, 1; 131, 1; 52067, 1; 689539603691800627, 1; 190587675449278173059345726533, 1]
18764.23user 5.79system 4:53:25elapsed 106%CPU (0avgtext+0avgdata 2438016maxresident)k
0inputs+11920outputs (0major+689870minor)pagefaults 0swaps
18915.64user 5.18system 4:55:57elapsed 106%CPU (0avgtext+0avgdata 1473132maxresident)k
0inputs+11920outputs (0major+448591minor)pagefaults 0swaps
3 == Mod(2,2^186-677)^63681224503600087529071765710752054074291864165486613630
factorint(exponent)=[2, 1; 5, 1; 33247, 1; 358571, 1; 7928016557, 1; 67378173123371917109108673705715907, 1]
23958.80user 7.06system 6:14:31elapsed 106%CPU (0avgtext+0avgdata 2292040maxresident)k
0inputs+0outputs (0major+661751minor)pagefaults 0swaps
23895.33user 5.56system 6:13:27elapsed 106%CPU (0avgtext+0avgdata 1538424maxresident)k
0inputs+0outputs (0major+473337minor)pagefaults 0swaps
3 == Mod(2,2^187-46149)^195034208736354131649946816171680973825988007692982503656
factorint(exponent)=[2, 3; 11, 1; 17, 2; 211, 1; 8669786940534059, 1; 4192174941327764177879540281164167, 1]
45783.08user 6.74system 12:20:45elapsed 103%CPU (0avgtext+0avgdata 2872280maxresident)k
0inputs+20248outputs (0major+810592minor)pagefaults 0swaps
3 == Mod(2,2^188-30413)^55017927481585789248987625621012150963246652350632181768
factorint(exponent)=[2, 3; 7, 1; 3947459603, 1; 4777509221138501, 1; 52095111428005892532232657001, 1]
26928.18user 6.80system 7:04:43elapsed 105%CPU (0avgtext+0avgdata 2697900maxresident)k
0inputs+9088outputs (0major+768472minor)pagefaults 0swaps
26818.54user 5.90system 7:02:52elapsed 105%CPU (0avgtext+0avgdata 1621568maxresident)k
0inputs+9088outputs (0major+499378minor)pagefaults 0swaps
3 == Mod(7,2^189-6633)^160211683142452257246918482239543780395239425505947027448
factorint(exponent)=[2, 3; 7, 1; 11, 1; 260083901205279638387854678960298344797466599847316603, 1]
29345.41user 6.89system 7:43:06elapsed 105%CPU (0avgtext+0avgdata 2488320maxresident)k
0inputs+0outputs (0major+720938minor)pagefaults 0swaps
29452.61user 5.91system 7:44:53elapsed 105%CPU (0avgtext+0avgdata 1269376maxresident)k
0inputs+0outputs (0major+416168minor)pagefaults 0swaps
3 == Mod(2,2^190-9077)^855032011069084103961830537639327186319802002477770385914
factorint(exponent)=[2, 1; 23, 1; 29, 1; 3191, 1; 9717823901686782130807, 1; 20669535439095909624020866583, 1]
24755.68user 7.91system 6:24:32elapsed 107%CPU (0avgtext+0avgdata 3193992maxresident)k
536inputs+19576outputs (5major+899406minor)pagefaults 0swaps
24763.72user 6.36system 6:24:39elapsed 107%CPU (0avgtext+0avgdata 1634928maxresident)k
0inputs+19576outputs (0major+509502minor)pagefaults 0swaps
3 == Mod(2,2^191-75621)^2149302422473442856041369505068124604243113170475512354924
factorint(exponent)=[2, 2; 7, 1; 17, 1; 149, 1; 173, 1; 351479, 1; 69237648607487, 1; 7198077387654168784176079712869, 1]
53328.09user 7.48system 14:18:38elapsed 103%CPU (0avgtext+0avgdata 2474244maxresident)k
0inputs+10632outputs (0major+725297minor)pagefaults 0swaps
3 == Mod(2,2^192-41213)^1475263549840477502072032870082288227439866846699525368392
factorint(exponent)=[2, 3; 13, 1; 2953, 1; 103775679437, 1; 48844265022839813, 1; 947684246765650559497861, 1]
55285.86user 7.63system 14:48:53elapsed 103%CPU (0avgtext+0avgdata 2884740maxresident)k
16inputs+5640outputs (1major+831134minor)pagefaults 0swaps
3 == Mod(2,2^193-2805)^10210877365387131994929760612511960530811872163899773966518
factorint(exponent)=[2, 1; 467651, 1; 6970322461, 1; 1566240058388427404832086470925311381208669, 1]
39190.81user 8.03system 10:18:05elapsed 105%CPU (0avgtext+0avgdata 2321804maxresident)k
0inputs+0outputs (0major+697457minor)pagefaults 0swaps
3 == Mod(5,2^194-6641)^20799802532316939626625315140391651771450622700786109402760
factorint(exponent)=[2, 3; 5, 1; 449, 1; 5557, 1; 8252017, 1; 349991828976763, 1; 72159657552390611812646897723, 1]
51218.46user 9.02system 13:35:52elapsed 104%CPU (0avgtext+0avgdata 2945472maxresident)k
0inputs+8216outputs (0major+857097minor)pagefaults 0swaps
3 == Mod(2,2^195-43101)^40742003581867642657982991043681770590508255406195241425988
factorint(exponent)=[2, 2; 11, 1; 41, 1; 2351, 1; 373459, 1; 12480841, 1; 45768467437908541, 1; 45029805337085480865643, 1]
62768.71user 9.33system 16:45:26elapsed 104%CPU (0avgtext+0avgdata 3305032maxresident)k
544inputs+5840outputs (5major+949029minor)pagefaults 0swaps
3 == Mod(7,2^196-17897) ^ ???
100553.19user 13.03system 27:12:00elapsed 102%CPU (0avgtext+0avgdata 4230900maxresident)k
1024inputs+0outputs (5major+1186968minor)pagefaults 0swaps
3 == Mod(7,2^197-35793)^75986558830521033874930731653641605352646190318574570793826
factorint(exponent)=[2, 1; 3, 1; 23, 1; 47, 1; 3890819, 1; 3011055807751017735061852821990658742370330634289, 1]
32477.09user 11.00system 8:14:01elapsed 109%CPU (0avgtext+0avgdata 2517684maxresident)k
2848inputs+32outputs (12major+761002minor)pagefaults 0swaps
3 == Mod(17,2^198-10985)^272694768827420472771490577516231067277320887408601854151478
factorint(exponent)=[2, 1; 3799462819, 1; 686703956647662797, 1; 52258274108330774120219717866573, 1]
58094.47user 11.34system 15:17:21elapsed 105%CPU (0avgtext+0avgdata 2373308maxresident)k
848inputs+15888outputs (4major+727507minor)pagefaults 0swaps
3 == Mod(2,2^199-13845) ^ ???
117740.86user 14.85system 31:47:37elapsed 102%CPU (0avgtext+0avgdata 4031900maxresident)k
4520inputs+0outputs (117major+1200158minor)pagefaults 0swaps
3 == Mod(2,2^200-13973) ^ ???
123865.59user 13.95system 33:25:28elapsed 102%CPU (0avgtext+0avgdata 4234956maxresident)k
8824inputs+0outputs (36major+1203251minor)pagefaults 0swaps
No comments :
Post a Comment