Let's ignore reality and pretend that the Madelung rule (aufbau principle) is always true. We use it to calculate the electron configuration of isolated neutral single atoms in their ground state (which is itself not too realistic a situation).
(In reality, the rule is often false. However, the periodic table has elements assigned to blocks whose size, shape, and location in the table reflect electron configuration predicted by the Madelung rule, assuming the rule is always true. The shape of the periodic table implicitly enshrines the Madelung rule.)
The table below has 8 fields per line, separated by colons.
Field 1: Atomic number (Z)
Field 2: Element name. Blank if the element has not been named (or discovered) yet, as of 2020.
Field 3: Element symbol. Blank if the element has not been assigned a symbol yet.
Field 4: Systematic element name, derived from its atomic number in base 10. The systematic name is officially intended only for elements with atomic numbers at least 100, but we give it for all elements just for fun.
Field 5: Systematic element symbol, derived from its atomic number. The systematic symbols for elements with atomic numbers less than 100 often collide with existing element symbols, which is one of the reasons why systematic names and symbols are not officially intended for elements with low atomic numbers.
Field 6: Electron configuration predicted by the Madelung rule, in traditional orbital notation. The subshells are given in the order that they fill. A vertical bar separates the inner (noble gas configuration) electrons from the outer electrons.
Field 7: Electron configuration predicted by the Madelung rule in a more verbose notation. Each subshell is parenthesized. For each subshell, we give its quantum numbers n and l and a fraction indicating the number of electrons in that subshell (i.e., its occupancy) and its capacity. The subshells are given in the order that they fill. A vertical bar separates the inner (noble gas configuration) electrons from the outer electrons. We also include an element's empty subshells up to the next noble gas configuration.
Field 8: The first number (with a plus) indicates how many more electrons the element has than the previous noble gas. The second number (with a minus) indicates how many less electrons the element has than the next noble gas. If the second number is -0, then the element is a noble gas. Sometimes these numbers line up with chemical valences.
Source code in Haskell to generate this table.
The code can also compute the first element (namely Z = 13245) in which we run out of letters to name its subshells. When that happens, it emits Unicode code points in order beyond 'z', starting with {.
This code can also list the atomic numbers of the noble gases (OEIS A018227). Future post: explanation of how we determine based on its electron configuration whether an element is a noble gas.
The following function implements the Madelung rule for a given n+l, listing all subshells in the order they are filled. We use List as the nondeterminism monad to get all possibilities.
allsubshells_nl :: Integer -> [(Nquantumnumber, Lsubshell)];
allsubshells_nl n_plus_l = do {
-- because we do these in this order, lower n are preferred first.
n <- [1 .. n_plus_l];
let { l = n_plus_l - n; };
assert (0 <= l) $ return ();
Monad.guard $ l < n;
return (Nquantumnumber n, Lsubshell l);
};
This code is inefficient by a factor of 2. n could have started at n_plus_l/2 instead of 1. Perhaps the compiler can optimize this (though I doubt it does).
The systematic element name is generated by concatenating Latin and Greek roots and the suffix -ium, then applying the regular expression substitutions s/ii/i/g and s/nnn/nn/g. We used Text.Regex.subRegex in the regex-compat-tdfa package to perform the substitutions. There is no longer built-in find-and-replace functionality in the non-"compat" regex packages, a curious removal of usefulness.
We list all elements up to atomic number 121 (the first appearance of the g orbital), and then a selected few elements beyond, including the first appearance of the h orbital at element 221, and finally element 222 with its funny sounding name, bibibium.
WARNING: Just to reiterate, these electron configurations are those predicted by the Madelung rule. They often do not reflect reality!
Z = 1 : hydrogen : H : unium : U : | 1s^1 : | ( n = 1 , l = 0 , 1 / 2 ) : noble +1 -1
Z = 2 : helium : He : bium : B : | 1s^2 : | ( n = 1 , l = 0 , 2 / 2 ) : noble +2 -0
Z = 3 : lithium : Li : trium : T : 1s^2 | 2s^1 : ( n = 1 , l = 0 , 2 / 2 ) | ( n = 2 , l = 0 , 1 / 2 ) ( n = 2 , l = 1 , 0 / 6 ) : noble +1 -7
Z = 4 : beryllium : Be : quadium : Q : 1s^2 | 2s^2 : ( n = 1 , l = 0 , 2 / 2 ) | ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 0 / 6 ) : noble +2 -6
Z = 5 : boron : B : pentium : P : 1s^2 | 2s^2 2p^1 : ( n = 1 , l = 0 , 2 / 2 ) | ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 1 / 6 ) : noble +3 -5
Z = 6 : carbon : C : hexium : H : 1s^2 | 2s^2 2p^2 : ( n = 1 , l = 0 , 2 / 2 ) | ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 2 / 6 ) : noble +4 -4
Z = 7 : nitrogen : N : septium : S : 1s^2 | 2s^2 2p^3 : ( n = 1 , l = 0 , 2 / 2 ) | ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 3 / 6 ) : noble +5 -3
Z = 8 : oxygen : O : octium : O : 1s^2 | 2s^2 2p^4 : ( n = 1 , l = 0 , 2 / 2 ) | ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 4 / 6 ) : noble +6 -2
Z = 9 : fluorine : F : ennium : E : 1s^2 | 2s^2 2p^5 : ( n = 1 , l = 0 , 2 / 2 ) | ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 5 / 6 ) : noble +7 -1
Z = 10 : neon : Ne : unnilium : Un : 1s^2 | 2s^2 2p^6 : ( n = 1 , l = 0 , 2 / 2 ) | ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) : noble +8 -0
Z = 11 : sodium : Na : ununium : Uu : 1s^2 2s^2 2p^6 | 3s^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) | ( n = 3 , l = 0 , 1 / 2 ) ( n = 3 , l = 1 , 0 / 6 ) : noble +1 -7
Z = 12 : magnesium : Mg : unbium : Ub : 1s^2 2s^2 2p^6 | 3s^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) | ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 0 / 6 ) : noble +2 -6
Z = 13 : aluminum : Al : untrium : Ut : 1s^2 2s^2 2p^6 | 3s^2 3p^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) | ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 1 / 6 ) : noble +3 -5
Z = 14 : silicon : Si : unquadium : Uq : 1s^2 2s^2 2p^6 | 3s^2 3p^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) | ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 2 / 6 ) : noble +4 -4
Z = 15 : phosphorus : P : unpentium : Up : 1s^2 2s^2 2p^6 | 3s^2 3p^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) | ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 3 / 6 ) : noble +5 -3
Z = 16 : sulfur : S : unhexium : Uh : 1s^2 2s^2 2p^6 | 3s^2 3p^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) | ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 4 / 6 ) : noble +6 -2
Z = 17 : chlorine : Cl : unseptium : Us : 1s^2 2s^2 2p^6 | 3s^2 3p^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) | ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 5 / 6 ) : noble +7 -1
Z = 18 : argon : Ar : unoctium : Uo : 1s^2 2s^2 2p^6 | 3s^2 3p^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) | ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) : noble +8 -0
Z = 19 : potassium : K : unennium : Ue : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 1 / 2 ) ( n = 3 , l = 2 , 0 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +1 -17
Z = 20 : calcium : Ca : binilium : Bn : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 0 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +2 -16
Z = 21 : scandium : Sc : biunium : Bu : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 1 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +3 -15
Z = 22 : titanium : Ti : bibium : Bb : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 2 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +4 -14
Z = 23 : vanadium : V : bitrium : Bt : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 3 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +5 -13
Z = 24 : chromium : Cr : biquadium : Bq : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 4 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +6 -12
Z = 25 : manganese : Mn : bipentium : Bp : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 5 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +7 -11
Z = 26 : iron : Fe : bihexium : Bh : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 6 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +8 -10
Z = 27 : cobalt : Co : biseptium : Bs : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^7 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 7 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +9 -9
Z = 28 : nickel : Ni : bioctium : Bo : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^8 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 8 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +10 -8
Z = 29 : copper : Cu : biennium : Be : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^9 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 9 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +11 -7
Z = 30 : zinc : Zn : trinilium : Tn : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^10 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 0 / 6 ) : noble +12 -6
Z = 31 : gallium : Ga : triunium : Tu : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^10 4p^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 1 / 6 ) : noble +13 -5
Z = 32 : germanium : Ge : tribium : Tb : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^10 4p^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 2 / 6 ) : noble +14 -4
Z = 33 : arsenic : As : tritrium : Tt : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^10 4p^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 3 / 6 ) : noble +15 -3
Z = 34 : selenium : Se : triquadium : Tq : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^10 4p^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 4 / 6 ) : noble +16 -2
Z = 35 : bromine : Br : tripentium : Tp : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^10 4p^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 5 / 6 ) : noble +17 -1
Z = 36 : krypton : Kr : trihexium : Th : 1s^2 2s^2 2p^6 3s^2 3p^6 | 4s^2 3d^10 4p^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) | ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) : noble +18 -0
Z = 37 : rubidium : Rb : triseptium : Ts : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 1 / 2 ) ( n = 4 , l = 2 , 0 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +1 -17
Z = 38 : strontium : Sr : trioctium : To : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 0 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +2 -16
Z = 39 : yttrium : Y : triennium : Te : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 1 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +3 -15
Z = 40 : zirconium : Zr : quadnilium : Qn : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 2 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +4 -14
Z = 41 : niobium : Nb : quadunium : Qu : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 3 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +5 -13
Z = 42 : molybdenum : Mo : quadbium : Qb : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 4 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +6 -12
Z = 43 : technetium : Tc : quadtrium : Qt : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 5 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +7 -11
Z = 44 : ruthenium : Ru : quadquadium : Qq : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 6 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +8 -10
Z = 45 : rhodium : Rh : quadpentium : Qp : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^7 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 7 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +9 -9
Z = 46 : palladium : Pd : quadhexium : Qh : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^8 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 8 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +10 -8
Z = 47 : silver : Ag : quadseptium : Qs : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^9 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 9 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +11 -7
Z = 48 : cadmium : Cd : quadoctium : Qo : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^10 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 0 / 6 ) : noble +12 -6
Z = 49 : indium : In : quadennium : Qe : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^10 5p^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 1 / 6 ) : noble +13 -5
Z = 50 : tin : Sn : pentnilium : Pn : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^10 5p^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 2 / 6 ) : noble +14 -4
Z = 51 : antimony : Sb : pentunium : Pu : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^10 5p^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 3 / 6 ) : noble +15 -3
Z = 52 : tellurium : Te : pentbium : Pb : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^10 5p^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 4 / 6 ) : noble +16 -2
Z = 53 : iodine : I : penttrium : Pt : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^10 5p^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 5 / 6 ) : noble +17 -1
Z = 54 : xenon : Xe : pentquadium : Pq : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 | 5s^2 4d^10 5p^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) | ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) : noble +18 -0
Z = 55 : cesium : Cs : pentpentium : Pp : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 1 / 2 ) ( n = 4 , l = 3 , 0 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +1 -31
Z = 56 : barium : Ba : penthexium : Ph : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 0 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +2 -30
Z = 57 : lanthanum : La : pentseptium : Ps : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 1 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +3 -29
Z = 58 : cerium : Ce : pentoctium : Po : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 2 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +4 -28
Z = 59 : praseodymium : Pr : pentennium : Pe : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 3 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +5 -27
Z = 60 : neodymium : Nd : hexnilium : Hn : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 4 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +6 -26
Z = 61 : promethium : Pm : hexunium : Hu : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 5 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +7 -25
Z = 62 : samarium : Sm : hexbium : Hb : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 6 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +8 -24
Z = 63 : europium : Eu : hextrium : Ht : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^7 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 7 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +9 -23
Z = 64 : gadolinium : Gd : hexquadium : Hq : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^8 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 8 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +10 -22
Z = 65 : terbium : Tb : hexpentium : Hp : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^9 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 9 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +11 -21
Z = 66 : dysprosium : Dy : hexhexium : Hh : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^10 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 10 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +12 -20
Z = 67 : holmium : Ho : hexseptium : Hs : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^11 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 11 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +13 -19
Z = 68 : erbium : Er : hexoctium : Ho : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^12 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 12 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +14 -18
Z = 69 : thulium : Tm : hexennium : He : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^13 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 13 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +15 -17
Z = 70 : ytterbium : Yb : septnilium : Sn : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 0 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +16 -16
Z = 71 : lutetium : Lu : septunium : Su : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 1 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +17 -15
Z = 72 : hafnium : Hf : septbium : Sb : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 2 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +18 -14
Z = 73 : tantalum : Ta : septtrium : St : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 3 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +19 -13
Z = 74 : tungsten : W : septquadium : Sq : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 4 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +20 -12
Z = 75 : rhenium : Re : septpentium : Sp : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 5 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +21 -11
Z = 76 : osmium : Os : septhexium : Sh : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 6 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +22 -10
Z = 77 : iridium : Ir : septseptium : Ss : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^7 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 7 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +23 -9
Z = 78 : platinum : Pt : septoctium : So : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^8 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 8 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +24 -8
Z = 79 : gold : Au : septennium : Se : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^9 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 9 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +25 -7
Z = 80 : mercury : Hg : octnilium : On : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^10 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 0 / 6 ) : noble +26 -6
Z = 81 : thallium : Tl : octunium : Ou : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^10 6p^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 1 / 6 ) : noble +27 -5
Z = 82 : lead : Pb : octbium : Ob : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^10 6p^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 2 / 6 ) : noble +28 -4
Z = 83 : bismuth : Bi : octtrium : Ot : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^10 6p^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 3 / 6 ) : noble +29 -3
Z = 84 : polonium : Po : octquadium : Oq : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^10 6p^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 4 / 6 ) : noble +30 -2
Z = 85 : astatine : At : octpentium : Op : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^10 6p^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 5 / 6 ) : noble +31 -1
Z = 86 : radon : Rn : octhexium : Oh : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 | 6s^2 4f^14 5d^10 6p^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) | ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) : noble +32 -0
Z = 87 : francium : Fr : octseptium : Os : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 1 / 2 ) ( n = 5 , l = 3 , 0 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +1 -31
Z = 88 : radium : Ra : octoctium : Oo : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 0 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +2 -30
Z = 89 : actinium : Ac : octennium : Oe : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 1 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +3 -29
Z = 90 : thorium : Th : ennilium : En : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 2 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +4 -28
Z = 91 : protactinium : Pa : ennunium : Eu : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 3 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +5 -27
Z = 92 : uranium : U : ennbium : Eb : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 4 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +6 -26
Z = 93 : neptunium : Np : enntrium : Et : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 5 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +7 -25
Z = 94 : plutonium : Pu : ennquadium : Eq : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 6 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +8 -24
Z = 95 : americium : Am : ennpentium : Ep : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^7 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 7 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +9 -23
Z = 96 : curium : Cm : ennhexium : Eh : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^8 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 8 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +10 -22
Z = 97 : berkelium : Bk : ennseptium : Es : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^9 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 9 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +11 -21
Z = 98 : californium : Cf : ennoctium : Eo : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^10 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 10 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +12 -20
Z = 99 : einsteinium : Es : ennennium : Ee : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^11 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 11 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +13 -19
Z = 100 : fermium : Fm : unnilnilium : Unn : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^12 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 12 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +14 -18
Z = 101 : mendelevium : Md : unnilunium : Unu : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^13 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 13 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +15 -17
Z = 102 : nobelium : No : unnilbium : Unb : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 0 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +16 -16
Z = 103 : lawrencium : Lr : unniltrium : Unt : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 1 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +17 -15
Z = 104 : rutherfordium : Rf : unnilquadium : Unq : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 2 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +18 -14
Z = 105 : dubnium : Db : unnilpentium : Unp : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 3 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +19 -13
Z = 106 : seaborgium : Sg : unnilhexium : Unh : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 4 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +20 -12
Z = 107 : bohrium : Bh : unnilseptium : Uns : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 5 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +21 -11
Z = 108 : hassium : Hs : unniloctium : Uno : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 6 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +22 -10
Z = 109 : meitnerium : Mt : unnilennium : Une : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^7 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 7 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +23 -9
Z = 110 : darmstadtium : Ds : ununnilium : Uun : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^8 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 8 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +24 -8
Z = 111 : roentgenium : Rg : unununium : Uuu : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^9 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 9 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +25 -7
Z = 112 : copernicium : Cn : ununbium : Uub : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^10 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 0 / 6 ) : noble +26 -6
Z = 113 : nihonium : Nh : ununtrium : Uut : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^10 7p^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 1 / 6 ) : noble +27 -5
Z = 114 : flerovium : Fl : ununquadium : Uuq : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^10 7p^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 2 / 6 ) : noble +28 -4
Z = 115 : moscovium : Mc : ununpentium : Uup : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^10 7p^3 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 3 / 6 ) : noble +29 -3
Z = 116 : livermorium : Lv : ununhexium : Uuh : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^10 7p^4 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 4 / 6 ) : noble +30 -2
Z = 117 : tennessine : Ts : ununseptium : Uus : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^10 7p^5 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 5 / 6 ) : noble +31 -1
Z = 118 : oganesson : Og : ununoctium : Uuo : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 | 7s^2 5f^14 6d^10 7p^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) | ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) : noble +32 -0
Z = 119 : : : ununennium : Uue : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 | 8s^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) | ( n = 8 , l = 0 , 1 / 2 ) ( n = 5 , l = 4 , 0 / 18 ) ( n = 6 , l = 3 , 0 / 14 ) ( n = 7 , l = 2 , 0 / 10 ) ( n = 8 , l = 1 , 0 / 6 ) : noble +1 -49
Z = 120 : : : unbinilium : Ubn : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 | 8s^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) | ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 0 / 18 ) ( n = 6 , l = 3 , 0 / 14 ) ( n = 7 , l = 2 , 0 / 10 ) ( n = 8 , l = 1 , 0 / 6 ) : noble +2 -48
Z = 121 : : : unbiunium : Ubu : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 | 8s^2 5g^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) | ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 1 / 18 ) ( n = 6 , l = 3 , 0 / 14 ) ( n = 7 , l = 2 , 0 / 10 ) ( n = 8 , l = 1 , 0 / 6 ) : noble +3 -47
Z = 138 : : : untrioctium : Uto : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 | 8s^2 5g^18 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) | ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 0 / 14 ) ( n = 7 , l = 2 , 0 / 10 ) ( n = 8 , l = 1 , 0 / 6 ) : noble +20 -30
Z = 139 : : : untriennium : Ute : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 | 8s^2 5g^18 6f^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) | ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 1 / 14 ) ( n = 7 , l = 2 , 0 / 10 ) ( n = 8 , l = 1 , 0 / 6 ) : noble +21 -29
Z = 168 : : : unhexoctium : Uho : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 | 8s^2 5g^18 6f^14 7d^10 8p^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) | ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 14 / 14 ) ( n = 7 , l = 2 , 10 / 10 ) ( n = 8 , l = 1 , 6 / 6 ) : noble +50 -0
Z = 169 : : : unhexennium : Uhe : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 8s^2 5g^18 6f^14 7d^10 8p^6 | 9s^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 14 / 14 ) ( n = 7 , l = 2 , 10 / 10 ) ( n = 8 , l = 1 , 6 / 6 ) | ( n = 9 , l = 0 , 1 / 2 ) ( n = 6 , l = 4 , 0 / 18 ) ( n = 7 , l = 3 , 0 / 14 ) ( n = 8 , l = 2 , 0 / 10 ) ( n = 9 , l = 1 , 0 / 6 ) : noble +1 -49
Z = 170 : : : unseptnilium : Usn : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 8s^2 5g^18 6f^14 7d^10 8p^6 | 9s^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 14 / 14 ) ( n = 7 , l = 2 , 10 / 10 ) ( n = 8 , l = 1 , 6 / 6 ) | ( n = 9 , l = 0 , 2 / 2 ) ( n = 6 , l = 4 , 0 / 18 ) ( n = 7 , l = 3 , 0 / 14 ) ( n = 8 , l = 2 , 0 / 10 ) ( n = 9 , l = 1 , 0 / 6 ) : noble +2 -48
Z = 171 : : : unseptunium : Usu : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 8s^2 5g^18 6f^14 7d^10 8p^6 | 9s^2 6g^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 14 / 14 ) ( n = 7 , l = 2 , 10 / 10 ) ( n = 8 , l = 1 , 6 / 6 ) | ( n = 9 , l = 0 , 2 / 2 ) ( n = 6 , l = 4 , 1 / 18 ) ( n = 7 , l = 3 , 0 / 14 ) ( n = 8 , l = 2 , 0 / 10 ) ( n = 9 , l = 1 , 0 / 6 ) : noble +3 -47
Z = 218 : : : biunoctium : Buo : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 8s^2 5g^18 6f^14 7d^10 8p^6 | 9s^2 6g^18 7f^14 8d^10 9p^6 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 14 / 14 ) ( n = 7 , l = 2 , 10 / 10 ) ( n = 8 , l = 1 , 6 / 6 ) | ( n = 9 , l = 0 , 2 / 2 ) ( n = 6 , l = 4 , 18 / 18 ) ( n = 7 , l = 3 , 14 / 14 ) ( n = 8 , l = 2 , 10 / 10 ) ( n = 9 , l = 1 , 6 / 6 ) : noble +50 -0
Z = 219 : : : biunennium : Bue : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 8s^2 5g^18 6f^14 7d^10 8p^6 9s^2 6g^18 7f^14 8d^10 9p^6 | 10s^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 14 / 14 ) ( n = 7 , l = 2 , 10 / 10 ) ( n = 8 , l = 1 , 6 / 6 ) ( n = 9 , l = 0 , 2 / 2 ) ( n = 6 , l = 4 , 18 / 18 ) ( n = 7 , l = 3 , 14 / 14 ) ( n = 8 , l = 2 , 10 / 10 ) ( n = 9 , l = 1 , 6 / 6 ) | ( n = 10 , l = 0 , 1 / 2 ) ( n = 6 , l = 5 , 0 / 22 ) ( n = 7 , l = 4 , 0 / 18 ) ( n = 8 , l = 3 , 0 / 14 ) ( n = 9 , l = 2 , 0 / 10 ) ( n = 10 , l = 1 , 0 / 6 ) : noble +1 -71
Z = 220 : : : bibinilium : Bbn : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 8s^2 5g^18 6f^14 7d^10 8p^6 9s^2 6g^18 7f^14 8d^10 9p^6 | 10s^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 14 / 14 ) ( n = 7 , l = 2 , 10 / 10 ) ( n = 8 , l = 1 , 6 / 6 ) ( n = 9 , l = 0 , 2 / 2 ) ( n = 6 , l = 4 , 18 / 18 ) ( n = 7 , l = 3 , 14 / 14 ) ( n = 8 , l = 2 , 10 / 10 ) ( n = 9 , l = 1 , 6 / 6 ) | ( n = 10 , l = 0 , 2 / 2 ) ( n = 6 , l = 5 , 0 / 22 ) ( n = 7 , l = 4 , 0 / 18 ) ( n = 8 , l = 3 , 0 / 14 ) ( n = 9 , l = 2 , 0 / 10 ) ( n = 10 , l = 1 , 0 / 6 ) : noble +2 -70
Z = 221 : : : bibiunium : Bbu : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 8s^2 5g^18 6f^14 7d^10 8p^6 9s^2 6g^18 7f^14 8d^10 9p^6 | 10s^2 6h^1 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 14 / 14 ) ( n = 7 , l = 2 , 10 / 10 ) ( n = 8 , l = 1 , 6 / 6 ) ( n = 9 , l = 0 , 2 / 2 ) ( n = 6 , l = 4 , 18 / 18 ) ( n = 7 , l = 3 , 14 / 14 ) ( n = 8 , l = 2 , 10 / 10 ) ( n = 9 , l = 1 , 6 / 6 ) | ( n = 10 , l = 0 , 2 / 2 ) ( n = 6 , l = 5 , 1 / 22 ) ( n = 7 , l = 4 , 0 / 18 ) ( n = 8 , l = 3 , 0 / 14 ) ( n = 9 , l = 2 , 0 / 10 ) ( n = 10 , l = 1 , 0 / 6 ) : noble +3 -69
Z = 222 : : : bibibium : Bbb : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6 5s^2 4d^10 5p^6 6s^2 4f^14 5d^10 6p^6 7s^2 5f^14 6d^10 7p^6 8s^2 5g^18 6f^14 7d^10 8p^6 9s^2 6g^18 7f^14 8d^10 9p^6 | 10s^2 6h^2 : ( n = 1 , l = 0 , 2 / 2 ) ( n = 2 , l = 0 , 2 / 2 ) ( n = 2 , l = 1 , 6 / 6 ) ( n = 3 , l = 0 , 2 / 2 ) ( n = 3 , l = 1 , 6 / 6 ) ( n = 4 , l = 0 , 2 / 2 ) ( n = 3 , l = 2 , 10 / 10 ) ( n = 4 , l = 1 , 6 / 6 ) ( n = 5 , l = 0 , 2 / 2 ) ( n = 4 , l = 2 , 10 / 10 ) ( n = 5 , l = 1 , 6 / 6 ) ( n = 6 , l = 0 , 2 / 2 ) ( n = 4 , l = 3 , 14 / 14 ) ( n = 5 , l = 2 , 10 / 10 ) ( n = 6 , l = 1 , 6 / 6 ) ( n = 7 , l = 0 , 2 / 2 ) ( n = 5 , l = 3 , 14 / 14 ) ( n = 6 , l = 2 , 10 / 10 ) ( n = 7 , l = 1 , 6 / 6 ) ( n = 8 , l = 0 , 2 / 2 ) ( n = 5 , l = 4 , 18 / 18 ) ( n = 6 , l = 3 , 14 / 14 ) ( n = 7 , l = 2 , 10 / 10 ) ( n = 8 , l = 1 , 6 / 6 ) ( n = 9 , l = 0 , 2 / 2 ) ( n = 6 , l = 4 , 18 / 18 ) ( n = 7 , l = 3 , 14 / 14 ) ( n = 8 , l = 2 , 10 / 10 ) ( n = 9 , l = 1 , 6 / 6 ) | ( n = 10 , l = 0 , 2 / 2 ) ( n = 6 , l = 5 , 2 / 22 ) ( n = 7 , l = 4 , 0 / 18 ) ( n = 8 , l = 3 , 0 / 14 ) ( n = 9 , l = 2 , 0 / 10 ) ( n = 10 , l = 1 , 0 / 6 ) : noble +4 -68
No comments :
Post a Comment