Saturday, March 09, 2019

[nxbkfepw] Square roots of multiples of 10

By the nature of squares and square roots, the subjectively useful list in base 10 extends up to 100.

Inspired by needing sqrt(20) recently.

sqrt 2 = 1.4142135623730950488016887242096980786
sqrt 3 = 1.7320508075688772935274463415058723670
sqrt 5 = 2.2360679774997896964091736687312762354
sqrt 6 = 2.4494897427831780981972840747058913920
sqrt 7 = 2.6457513110645905905016157536392604257
sqrt 8 = 2.8284271247461900976033774484193961571
sqrt 10 = 3.1622776601683793319988935444327185337
sqrt 20 = 4.4721359549995793928183473374625524709
sqrt 30 = 5.4772255750516611345696978280080213395
sqrt 40 = 6.3245553203367586639977870888654370675
sqrt 50 = 7.0710678118654752440084436210484903929
sqrt 60 = 7.7459666924148337703585307995647992217
sqrt 70 = 8.3666002653407554797817202578518748940
sqrt 80 = 8.9442719099991587856366946749251049418
sqrt 90 = 9.4868329805051379959966806332981556012

1/sqrt 2 = 0.70710678118654752440084436210484903929
1/sqrt 3 = 0.57735026918962576450914878050195745565
1/sqrt 5 = 0.44721359549995793928183473374625524709
1/sqrt 6 = 0.40824829046386301636621401245098189866
1/sqrt 7 = 0.37796447300922722721451653623418006082
1/sqrt 8 = 0.35355339059327376220042218105242451964
1/sqrt 10 = 0.31622776601683793319988935444327185337
1/sqrt 20 = 0.22360679774997896964091736687312762354
1/sqrt 30 = 0.18257418583505537115232326093360071132
1/sqrt 40 = 0.15811388300841896659994467722163592669
1/sqrt 50 = 0.14142135623730950488016887242096980786
1/sqrt 60 = 0.12909944487358056283930884665941332036
1/sqrt 70 = 0.11952286093343936399688171796931249848
1/sqrt 80 = 0.11180339887498948482045868343656381177
1/sqrt 90 = 0.10540925533894597773329645148109061779

Some observations:

sqrt 20 and sqrt 30 differ by almost 1.  We can find the exact root with FindRoot[Sqrt[x]+1==Sqrt[x+10],{x,20}] .  The answer is

? sqrt(20.25)
4.5000000000000000000000000000000000000
? sqrt(30.25)
5.5000000000000000000000000000000000000

The decimal expansions of sqrt 50 and 1/sqrt 2 are related: sqrt(50)*0.1 = sqrt(100*0.5)*0.1 = sqrt(100)*sqrt(0.5)*0.1 = 10*sqrt(0.5)*0.1 = sqrt(0.5) = sqrt(1/2) = sqrt(1)/sqrt(2) = 1/sqrt(2).

Previously, roots and logarithms.

No comments :