Saturday, March 09, 2019

[jozupeos] Small factors of central binomial coefficients

We investigate how many times some small primes {2,3,5,7} divide central binomial coefficients c(n)=binomial(2*n,n).

For example, c(6) = 12 choose 6 = 924 = 2^2 * 3^1 * 5^0 * 7^1 * (higher factors), so the exponents are 2,1,0,1.  We write zero as period in the table below to distinguish zeroes from nonzeros.

2^x3^x5^x7^x
0 choose 0....
2 choose 11...
4 choose 211..
6 choose 32.1.
8 choose 41.11
10 choose 522.1
12 choose 621.1
14 choose 731..
16 choose 8121.
18 choose 92.1.
20 choose 102...
22 choose 1131.1
24 choose 122..1
26 choose 133.21
28 choose 14332.
30 choose 15421.
32 choose 16121.
34 choose 17231.
36 choose 182121
38 choose 193121
40 choose 202211
42 choose 21311.
44 choose 22311.
46 choose 23432.
48 choose 24222.
50 choose 2532.2
52 choose 2633.2
54 choose 274..2
56 choose 283.11
58 choose 294111
60 choose 304..1
62 choose 315..1
64 choose 3212.2

It seems p does not divide c(p^n) for p>2.  For p=2, 2 divides c(2^n) exactly once, probably from the 2 in the definition of c(n).

Here are some bar graphs revealing a fractal structure.  The horizontal axis goes from n=0 to 1199, that is, from (0 choose 0) to (2398 choose 1199); the vertical axis is stretched by a factor of 50.

2^x

central binomial coefficient 2^y

3^x

central binomial coefficient 3^y

5^x

central binomial coefficient 5^y

7^x

central binomial coefficient 7^y

Haskell source code.

No comments :