We investigate how many times some small primes {2,3,5,7} divide central binomial coefficients c(n)=binomial(2*n,n).
For example, c(6) = 12 choose 6 = 924 = 2^2 * 3^1 * 5^0 * 7^1 * (higher factors), so the exponents are 2,1,0,1. We write zero as period in the table below to distinguish zeroes from nonzeros.
| 2^x | 3^x | 5^x | 7^x | |
|---|---|---|---|---|
| 0 choose 0 | . | . | . | . |
| 2 choose 1 | 1 | . | . | . |
| 4 choose 2 | 1 | 1 | . | . |
| 6 choose 3 | 2 | . | 1 | . |
| 8 choose 4 | 1 | . | 1 | 1 |
| 10 choose 5 | 2 | 2 | . | 1 |
| 12 choose 6 | 2 | 1 | . | 1 |
| 14 choose 7 | 3 | 1 | . | . |
| 16 choose 8 | 1 | 2 | 1 | . |
| 18 choose 9 | 2 | . | 1 | . |
| 20 choose 10 | 2 | . | . | . |
| 22 choose 11 | 3 | 1 | . | 1 |
| 24 choose 12 | 2 | . | . | 1 |
| 26 choose 13 | 3 | . | 2 | 1 |
| 28 choose 14 | 3 | 3 | 2 | . |
| 30 choose 15 | 4 | 2 | 1 | . |
| 32 choose 16 | 1 | 2 | 1 | . |
| 34 choose 17 | 2 | 3 | 1 | . |
| 36 choose 18 | 2 | 1 | 2 | 1 |
| 38 choose 19 | 3 | 1 | 2 | 1 |
| 40 choose 20 | 2 | 2 | 1 | 1 |
| 42 choose 21 | 3 | 1 | 1 | . |
| 44 choose 22 | 3 | 1 | 1 | . |
| 46 choose 23 | 4 | 3 | 2 | . |
| 48 choose 24 | 2 | 2 | 2 | . |
| 50 choose 25 | 3 | 2 | . | 2 |
| 52 choose 26 | 3 | 3 | . | 2 |
| 54 choose 27 | 4 | . | . | 2 |
| 56 choose 28 | 3 | . | 1 | 1 |
| 58 choose 29 | 4 | 1 | 1 | 1 |
| 60 choose 30 | 4 | . | . | 1 |
| 62 choose 31 | 5 | . | . | 1 |
| 64 choose 32 | 1 | 2 | . | 2 |
It seems p does not divide c(p^n) for p>2. For p=2, 2 divides c(2^n) exactly once, probably from the 2 in the definition of c(n).
Here are some bar graphs revealing a fractal structure. The horizontal axis goes from n=0 to 1199, that is, from (0 choose 0) to (2398 choose 1199); the vertical axis is stretched by a factor of 50.
2^x

3^x

5^x

7^x

No comments :
Post a Comment