Here are the multiplication, reciprocal, and exponentiation tables for a few small finite fields (Galois fields) of composite order (size). A composite order necessarily means a prime raised to a power two or greater. We don't give addition tables because they are not very interesting, just modular addition digit by digit without carry.
We follow the format of a similar presentation of a finite field of size 13.
Computations were done with Pari/GP whose Mod() notation can do finite field arithmetic reducing by a polynomial. Source code. The ffinit() function finds an irreducible polynomial (one of many possible irreducible polynomials) for a finite field of given size. The values are given as the coefficients to the polynomial representation of elements, in big-endian order:
mffdisp(x,digits)=for(j=1,digits,i=digits-j;print1(lift(polcoeff(lift(x),i))));
In the multiplication table, we highlight in bold instances where the product is one, the multiplicative identity: these mark reciprocals.
In the exponentiation table, we again highlight outputs which are one. Rows which have the minimal number of ones are primitive polynomials, generators of the multiplicative group. In rows which aren't generators, the ones occur periodically, so the pattern depends on the factorization of (order-1). We observe a phenomenon similar to Fermat's Little Theorem: the penultimate column is always one. 0^0 is undefined, so we mark it with a question mark.
Future task: create an images of GF(p^3) tables, mapping each 3-component element to an RGB color. This could be done for lower powers, too.
GF(2^2)
Order: 4
Reduction polynomial: Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)
Multiplication
* | 00 | 01 | 10 | 11 |
---|---|---|---|---|
00 | 00 | 00 | 00 | 00 |
01 | 00 | 01 | 10 | 11 |
10 | 00 | 10 | 11 | 01 |
11 | 00 | 11 | 01 | 10 |
Multiplicative inverse (reciprocal)
x | 01 | 10 | 11 |
---|---|---|---|
x^-1 | 01 | 11 | 10 |
Raising to a power (exponentiation)
^ | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
00 | ? | 00 | 00 | 00 | 00 |
01 | 01 | 01 | 01 | 01 | 01 |
10 | 01 | 10 | 11 | 01 | 10 |
11 | 01 | 11 | 10 | 01 | 11 |
GF(2^3)
Order: 8
Reduction polynomial: Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)
Multiplication
* | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
---|---|---|---|---|---|---|---|---|
000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 |
001 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
010 | 000 | 010 | 100 | 110 | 101 | 111 | 001 | 011 |
011 | 000 | 011 | 110 | 101 | 001 | 010 | 111 | 100 |
100 | 000 | 100 | 101 | 001 | 111 | 011 | 010 | 110 |
101 | 000 | 101 | 111 | 010 | 011 | 110 | 100 | 001 |
110 | 000 | 110 | 001 | 111 | 010 | 100 | 011 | 101 |
111 | 000 | 111 | 011 | 100 | 110 | 001 | 101 | 010 |
Multiplicative inverse (reciprocal)
x | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
---|---|---|---|---|---|---|---|
x^-1 | 001 | 110 | 100 | 011 | 111 | 010 | 101 |
Raising to a power (exponentiation)
^ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
000 | ? | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 |
001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 |
010 | 001 | 010 | 100 | 101 | 111 | 011 | 110 | 001 | 010 |
011 | 001 | 011 | 101 | 010 | 110 | 111 | 100 | 001 | 011 |
100 | 001 | 100 | 111 | 110 | 010 | 101 | 011 | 001 | 100 |
101 | 001 | 101 | 110 | 100 | 011 | 010 | 111 | 001 | 101 |
110 | 001 | 110 | 011 | 111 | 101 | 100 | 010 | 001 | 110 |
111 | 001 | 111 | 010 | 011 | 100 | 110 | 101 | 001 | 111 |
GF(2^4)
Order: 16
Reduction polynomial: Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)
Multiplication
* | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |
0001 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
0010 | 0000 | 0010 | 0100 | 0110 | 1000 | 1010 | 1100 | 1110 | 1111 | 1101 | 1011 | 1001 | 0111 | 0101 | 0011 | 0001 |
0011 | 0000 | 0011 | 0110 | 0101 | 1100 | 1111 | 1010 | 1001 | 0111 | 0100 | 0001 | 0010 | 1011 | 1000 | 1101 | 1110 |
0100 | 0000 | 0100 | 1000 | 1100 | 1111 | 1011 | 0111 | 0011 | 0001 | 0101 | 1001 | 1101 | 1110 | 1010 | 0110 | 0010 |
0101 | 0000 | 0101 | 1010 | 1111 | 1011 | 1110 | 0001 | 0100 | 1001 | 1100 | 0011 | 0110 | 0010 | 0111 | 1000 | 1101 |
0110 | 0000 | 0110 | 1100 | 1010 | 0111 | 0001 | 1011 | 1101 | 1110 | 1000 | 0010 | 0100 | 1001 | 1111 | 0101 | 0011 |
0111 | 0000 | 0111 | 1110 | 1001 | 0011 | 0100 | 1101 | 1010 | 0110 | 0001 | 1000 | 1111 | 0101 | 0010 | 1011 | 1100 |
1000 | 0000 | 1000 | 1111 | 0111 | 0001 | 1001 | 1110 | 0110 | 0010 | 1010 | 1101 | 0101 | 0011 | 1011 | 1100 | 0100 |
1001 | 0000 | 1001 | 1101 | 0100 | 0101 | 1100 | 1000 | 0001 | 1010 | 0011 | 0111 | 1110 | 1111 | 0110 | 0010 | 1011 |
1010 | 0000 | 1010 | 1011 | 0001 | 1001 | 0011 | 0010 | 1000 | 1101 | 0111 | 0110 | 1100 | 0100 | 1110 | 1111 | 0101 |
1011 | 0000 | 1011 | 1001 | 0010 | 1101 | 0110 | 0100 | 1111 | 0101 | 1110 | 1100 | 0111 | 1000 | 0011 | 0001 | 1010 |
1100 | 0000 | 1100 | 0111 | 1011 | 1110 | 0010 | 1001 | 0101 | 0011 | 1111 | 0100 | 1000 | 1101 | 0001 | 1010 | 0110 |
1101 | 0000 | 1101 | 0101 | 1000 | 1010 | 0111 | 1111 | 0010 | 1011 | 0110 | 1110 | 0011 | 0001 | 1100 | 0100 | 1001 |
1110 | 0000 | 1110 | 0011 | 1101 | 0110 | 1000 | 0101 | 1011 | 1100 | 0010 | 1111 | 0001 | 1010 | 0100 | 1001 | 0111 |
1111 | 0000 | 1111 | 0001 | 1110 | 0010 | 1101 | 0011 | 1100 | 0100 | 1011 | 0101 | 1010 | 0110 | 1001 | 0111 | 1000 |
Multiplicative inverse (reciprocal)
x | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x^-1 | 0001 | 1111 | 1010 | 1000 | 0110 | 0101 | 1001 | 0100 | 0111 | 0011 | 1110 | 1101 | 1100 | 1011 | 0010 |
Raising to a power (exponentiation)
^ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0000 | ? | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |
0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 | 0001 |
0010 | 0001 | 0010 | 0100 | 1000 | 1111 | 0001 | 0010 | 0100 | 1000 | 1111 | 0001 | 0010 | 0100 | 1000 | 1111 | 0001 | 0010 |
0011 | 0001 | 0011 | 0101 | 1111 | 1110 | 1101 | 1000 | 0111 | 1001 | 0100 | 1100 | 1011 | 0010 | 0110 | 1010 | 0001 | 0011 |
0100 | 0001 | 0100 | 1111 | 0010 | 1000 | 0001 | 0100 | 1111 | 0010 | 1000 | 0001 | 0100 | 1111 | 0010 | 1000 | 0001 | 0100 |
0101 | 0001 | 0101 | 1110 | 1000 | 1001 | 1100 | 0010 | 1010 | 0011 | 1111 | 1101 | 0111 | 0100 | 1011 | 0110 | 0001 | 0101 |
0110 | 0001 | 0110 | 1011 | 0100 | 0111 | 1101 | 1111 | 0011 | 1010 | 0010 | 1100 | 1001 | 1000 | 1110 | 0101 | 0001 | 0110 |
0111 | 0001 | 0111 | 1010 | 1000 | 0110 | 1101 | 0010 | 1110 | 1011 | 1111 | 1100 | 0101 | 0100 | 0011 | 1001 | 0001 | 0111 |
1000 | 0001 | 1000 | 0010 | 1111 | 0100 | 0001 | 1000 | 0010 | 1111 | 0100 | 0001 | 1000 | 0010 | 1111 | 0100 | 0001 | 1000 |
1001 | 0001 | 1001 | 0011 | 0100 | 0101 | 1100 | 1111 | 1011 | 1110 | 0010 | 1101 | 0110 | 1000 | 1010 | 0111 | 0001 | 1001 |
1010 | 0001 | 1010 | 0110 | 0010 | 1011 | 1100 | 0100 | 1001 | 0111 | 1000 | 1101 | 1110 | 1111 | 0101 | 0011 | 0001 | 1010 |
1011 | 0001 | 1011 | 0111 | 1111 | 1010 | 1100 | 1000 | 0101 | 0110 | 0100 | 1101 | 0011 | 0010 | 1001 | 1110 | 0001 | 1011 |
1100 | 0001 | 1100 | 1101 | 0001 | 1100 | 1101 | 0001 | 1100 | 1101 | 0001 | 1100 | 1101 | 0001 | 1100 | 1101 | 0001 | 1100 |
1101 | 0001 | 1101 | 1100 | 0001 | 1101 | 1100 | 0001 | 1101 | 1100 | 0001 | 1101 | 1100 | 0001 | 1101 | 1100 | 0001 | 1101 |
1110 | 0001 | 1110 | 1001 | 0010 | 0011 | 1101 | 0100 | 0110 | 0101 | 1000 | 1100 | 1010 | 1111 | 0111 | 1011 | 0001 | 1110 |
1111 | 0001 | 1111 | 1000 | 0100 | 0010 | 0001 | 1111 | 1000 | 0100 | 0010 | 0001 | 1111 | 1000 | 0100 | 0010 | 0001 | 1111 |
GF(3^2)
Order: 9
Reduction polynomial: Mod(1, 3)*x^2 + Mod(1, 3)*x + Mod(2, 3)
Multiplication
* | 00 | 01 | 02 | 10 | 11 | 12 | 20 | 21 | 22 |
---|---|---|---|---|---|---|---|---|---|
00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
01 | 00 | 01 | 02 | 10 | 11 | 12 | 20 | 21 | 22 |
02 | 00 | 02 | 01 | 20 | 22 | 21 | 10 | 12 | 11 |
10 | 00 | 10 | 20 | 21 | 01 | 11 | 12 | 22 | 02 |
11 | 00 | 11 | 22 | 01 | 12 | 20 | 02 | 10 | 21 |
12 | 00 | 12 | 21 | 11 | 20 | 02 | 22 | 01 | 10 |
20 | 00 | 20 | 10 | 12 | 02 | 22 | 21 | 11 | 01 |
21 | 00 | 21 | 12 | 22 | 10 | 01 | 11 | 02 | 20 |
22 | 00 | 22 | 11 | 02 | 21 | 10 | 01 | 20 | 12 |
Multiplicative inverse (reciprocal)
x | 01 | 02 | 10 | 11 | 12 | 20 | 21 | 22 |
---|---|---|---|---|---|---|---|---|
x^-1 | 01 | 02 | 11 | 10 | 21 | 22 | 12 | 20 |
Raising to a power (exponentiation)
^ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
00 | ? | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 |
02 | 01 | 02 | 01 | 02 | 01 | 02 | 01 | 02 | 01 | 02 |
10 | 01 | 10 | 21 | 22 | 02 | 20 | 12 | 11 | 01 | 10 |
11 | 01 | 11 | 12 | 20 | 02 | 22 | 21 | 10 | 01 | 11 |
12 | 01 | 12 | 02 | 21 | 01 | 12 | 02 | 21 | 01 | 12 |
20 | 01 | 20 | 21 | 11 | 02 | 10 | 12 | 22 | 01 | 20 |
21 | 01 | 21 | 02 | 12 | 01 | 21 | 02 | 12 | 01 | 21 |
22 | 01 | 22 | 12 | 10 | 02 | 11 | 21 | 20 | 01 | 22 |
GF(3^3)
Order: 27
Reduction polynomial: Mod(1, 3)*x^3 + Mod(1, 3)*x^2 + Mod(1, 3)*x + Mod(2, 3)
Multiplication
* | 000 | 001 | 002 | 010 | 011 | 012 | 020 | 021 | 022 | 100 | 101 | 102 | 110 | 111 | 112 | 120 | 121 | 122 | 200 | 201 | 202 | 210 | 211 | 212 | 220 | 221 | 222 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 |
001 | 000 | 001 | 002 | 010 | 011 | 012 | 020 | 021 | 022 | 100 | 101 | 102 | 110 | 111 | 112 | 120 | 121 | 122 | 200 | 201 | 202 | 210 | 211 | 212 | 220 | 221 | 222 |
002 | 000 | 002 | 001 | 020 | 022 | 021 | 010 | 012 | 011 | 200 | 202 | 201 | 220 | 222 | 221 | 210 | 212 | 211 | 100 | 102 | 101 | 120 | 122 | 121 | 110 | 112 | 111 |
010 | 000 | 010 | 020 | 100 | 110 | 120 | 200 | 210 | 220 | 221 | 201 | 211 | 021 | 001 | 011 | 121 | 101 | 111 | 112 | 122 | 102 | 212 | 222 | 202 | 012 | 022 | 002 |
011 | 000 | 011 | 022 | 110 | 121 | 102 | 220 | 201 | 212 | 021 | 002 | 010 | 101 | 112 | 120 | 211 | 222 | 200 | 012 | 020 | 001 | 122 | 100 | 111 | 202 | 210 | 221 |
012 | 000 | 012 | 021 | 120 | 102 | 111 | 210 | 222 | 201 | 121 | 100 | 112 | 211 | 220 | 202 | 001 | 010 | 022 | 212 | 221 | 200 | 002 | 011 | 020 | 122 | 101 | 110 |
020 | 000 | 020 | 010 | 200 | 220 | 210 | 100 | 120 | 110 | 112 | 102 | 122 | 012 | 002 | 022 | 212 | 202 | 222 | 221 | 211 | 201 | 121 | 111 | 101 | 021 | 011 | 001 |
021 | 000 | 021 | 012 | 210 | 201 | 222 | 120 | 111 | 102 | 212 | 200 | 221 | 122 | 110 | 101 | 002 | 020 | 011 | 121 | 112 | 100 | 001 | 022 | 010 | 211 | 202 | 220 |
022 | 000 | 022 | 011 | 220 | 212 | 201 | 110 | 102 | 121 | 012 | 001 | 020 | 202 | 221 | 210 | 122 | 111 | 100 | 021 | 010 | 002 | 211 | 200 | 222 | 101 | 120 | 112 |
100 | 000 | 100 | 200 | 221 | 021 | 121 | 112 | 212 | 012 | 022 | 122 | 222 | 210 | 010 | 110 | 101 | 201 | 001 | 011 | 111 | 211 | 202 | 002 | 102 | 120 | 220 | 020 |
101 | 000 | 101 | 202 | 201 | 002 | 100 | 102 | 200 | 001 | 122 | 220 | 021 | 020 | 121 | 222 | 221 | 022 | 120 | 211 | 012 | 110 | 112 | 210 | 011 | 010 | 111 | 212 |
102 | 000 | 102 | 201 | 211 | 010 | 112 | 122 | 221 | 020 | 222 | 021 | 120 | 100 | 202 | 001 | 011 | 110 | 212 | 111 | 210 | 012 | 022 | 121 | 220 | 200 | 002 | 101 |
110 | 000 | 110 | 220 | 021 | 101 | 211 | 012 | 122 | 202 | 210 | 020 | 100 | 201 | 011 | 121 | 222 | 002 | 112 | 120 | 200 | 010 | 111 | 221 | 001 | 102 | 212 | 022 |
111 | 000 | 111 | 222 | 001 | 112 | 220 | 002 | 110 | 221 | 010 | 121 | 202 | 011 | 122 | 200 | 012 | 120 | 201 | 020 | 101 | 212 | 021 | 102 | 210 | 022 | 100 | 211 |
112 | 000 | 112 | 221 | 011 | 120 | 202 | 022 | 101 | 210 | 110 | 222 | 001 | 121 | 200 | 012 | 102 | 211 | 020 | 220 | 002 | 111 | 201 | 010 | 122 | 212 | 021 | 100 |
120 | 000 | 120 | 210 | 121 | 211 | 001 | 212 | 002 | 122 | 101 | 221 | 011 | 222 | 012 | 102 | 010 | 100 | 220 | 202 | 022 | 112 | 020 | 110 | 200 | 111 | 201 | 021 |
121 | 000 | 121 | 212 | 101 | 222 | 010 | 202 | 020 | 111 | 201 | 022 | 110 | 002 | 120 | 211 | 100 | 221 | 012 | 102 | 220 | 011 | 200 | 021 | 112 | 001 | 122 | 210 |
122 | 000 | 122 | 211 | 111 | 200 | 022 | 222 | 011 | 100 | 001 | 120 | 212 | 112 | 201 | 020 | 220 | 012 | 101 | 002 | 121 | 210 | 110 | 202 | 021 | 221 | 010 | 102 |
200 | 000 | 200 | 100 | 112 | 012 | 212 | 221 | 121 | 021 | 011 | 211 | 111 | 120 | 020 | 220 | 202 | 102 | 002 | 022 | 222 | 122 | 101 | 001 | 201 | 210 | 110 | 010 |
201 | 000 | 201 | 102 | 122 | 020 | 221 | 211 | 112 | 010 | 111 | 012 | 210 | 200 | 101 | 002 | 022 | 220 | 121 | 222 | 120 | 021 | 011 | 212 | 110 | 100 | 001 | 202 |
202 | 000 | 202 | 101 | 102 | 001 | 200 | 201 | 100 | 002 | 211 | 110 | 012 | 010 | 212 | 111 | 112 | 011 | 210 | 122 | 021 | 220 | 221 | 120 | 022 | 020 | 222 | 121 |
210 | 000 | 210 | 120 | 212 | 122 | 002 | 121 | 001 | 211 | 202 | 112 | 022 | 111 | 021 | 201 | 020 | 200 | 110 | 101 | 011 | 221 | 010 | 220 | 100 | 222 | 102 | 012 |
211 | 000 | 211 | 122 | 222 | 100 | 011 | 111 | 022 | 200 | 002 | 210 | 121 | 221 | 102 | 010 | 110 | 021 | 202 | 001 | 212 | 120 | 220 | 101 | 012 | 112 | 020 | 201 |
212 | 000 | 212 | 121 | 202 | 111 | 020 | 101 | 010 | 222 | 102 | 011 | 220 | 001 | 210 | 122 | 200 | 112 | 021 | 201 | 110 | 022 | 100 | 012 | 221 | 002 | 211 | 120 |
220 | 000 | 220 | 110 | 012 | 202 | 122 | 021 | 211 | 101 | 120 | 010 | 200 | 102 | 022 | 212 | 111 | 001 | 221 | 210 | 100 | 020 | 222 | 112 | 002 | 201 | 121 | 011 |
221 | 000 | 221 | 112 | 022 | 210 | 101 | 011 | 202 | 120 | 220 | 111 | 002 | 212 | 100 | 021 | 201 | 122 | 010 | 110 | 001 | 222 | 102 | 020 | 211 | 121 | 012 | 200 |
222 | 000 | 222 | 111 | 002 | 221 | 110 | 001 | 220 | 112 | 020 | 212 | 101 | 022 | 211 | 100 | 021 | 210 | 102 | 010 | 202 | 121 | 012 | 201 | 120 | 011 | 200 | 122 |
Multiplicative inverse (reciprocal)
x | 001 | 002 | 010 | 011 | 012 | 020 | 021 | 022 | 100 | 101 | 102 | 110 | 111 | 112 | 120 | 121 | 122 | 200 | 201 | 202 | 210 | 211 | 212 | 220 | 221 | 222 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x^-1 | 001 | 002 | 111 | 202 | 120 | 222 | 210 | 101 | 122 | 022 | 112 | 212 | 010 | 102 | 012 | 220 | 100 | 211 | 221 | 011 | 021 | 200 | 110 | 121 | 201 | 020 |
Raising to a power (exponentiation)
^ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
000 | ? | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 |
001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 |
002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 | 001 | 002 |
010 | 001 | 010 | 100 | 221 | 022 | 220 | 012 | 120 | 121 | 101 | 201 | 122 | 111 | 001 | 010 | 100 | 221 | 022 | 220 | 012 | 120 | 121 | 101 | 201 | 122 | 111 | 001 | 010 |
011 | 001 | 011 | 121 | 222 | 221 | 210 | 122 | 200 | 012 | 102 | 010 | 110 | 101 | 002 | 022 | 212 | 111 | 112 | 120 | 211 | 100 | 021 | 201 | 020 | 220 | 202 | 001 | 011 |
012 | 001 | 012 | 111 | 220 | 122 | 022 | 201 | 221 | 101 | 100 | 121 | 010 | 120 | 001 | 012 | 111 | 220 | 122 | 022 | 201 | 221 | 101 | 100 | 121 | 010 | 120 | 001 | 012 |
020 | 001 | 020 | 100 | 112 | 022 | 110 | 012 | 210 | 121 | 202 | 201 | 211 | 111 | 002 | 010 | 200 | 221 | 011 | 220 | 021 | 120 | 212 | 101 | 102 | 122 | 222 | 001 | 020 |
021 | 001 | 021 | 111 | 110 | 122 | 011 | 201 | 112 | 101 | 200 | 121 | 020 | 120 | 002 | 012 | 222 | 220 | 211 | 022 | 102 | 221 | 202 | 100 | 212 | 010 | 210 | 001 | 021 |
022 | 001 | 022 | 121 | 111 | 221 | 120 | 122 | 100 | 012 | 201 | 010 | 220 | 101 | 001 | 022 | 121 | 111 | 221 | 120 | 122 | 100 | 012 | 201 | 010 | 220 | 101 | 001 | 022 |
100 | 001 | 100 | 022 | 012 | 121 | 201 | 111 | 010 | 221 | 220 | 120 | 101 | 122 | 001 | 100 | 022 | 012 | 121 | 201 | 111 | 010 | 221 | 220 | 120 | 101 | 122 | 001 | 100 |
101 | 001 | 101 | 220 | 010 | 201 | 012 | 100 | 122 | 120 | 221 | 111 | 121 | 022 | 001 | 101 | 220 | 010 | 201 | 012 | 100 | 122 | 120 | 221 | 111 | 121 | 022 | 001 | 101 |
102 | 001 | 102 | 120 | 011 | 010 | 211 | 121 | 110 | 100 | 222 | 101 | 021 | 221 | 002 | 201 | 210 | 022 | 020 | 122 | 212 | 220 | 200 | 111 | 202 | 012 | 112 | 001 | 102 |
110 | 001 | 110 | 201 | 200 | 120 | 222 | 022 | 202 | 010 | 021 | 122 | 112 | 121 | 002 | 220 | 102 | 100 | 210 | 111 | 011 | 101 | 020 | 012 | 211 | 221 | 212 | 001 | 110 |
111 | 001 | 111 | 122 | 201 | 101 | 121 | 120 | 012 | 220 | 022 | 221 | 100 | 010 | 001 | 111 | 122 | 201 | 101 | 121 | 120 | 012 | 220 | 022 | 221 | 100 | 010 | 001 | 111 |
112 | 001 | 112 | 012 | 202 | 111 | 200 | 220 | 212 | 122 | 020 | 022 | 210 | 201 | 002 | 221 | 021 | 101 | 222 | 100 | 110 | 121 | 211 | 010 | 011 | 120 | 102 | 001 | 112 |
120 | 001 | 120 | 010 | 121 | 100 | 101 | 221 | 201 | 022 | 122 | 220 | 111 | 012 | 001 | 120 | 010 | 121 | 100 | 101 | 221 | 201 | 022 | 122 | 220 | 111 | 012 | 001 | 120 |
121 | 001 | 121 | 221 | 122 | 012 | 010 | 101 | 022 | 111 | 120 | 100 | 201 | 220 | 001 | 121 | 221 | 122 | 012 | 010 | 101 | 022 | 111 | 120 | 100 | 201 | 220 | 001 | 121 |
122 | 001 | 122 | 101 | 120 | 220 | 221 | 010 | 111 | 201 | 121 | 012 | 022 | 100 | 001 | 122 | 101 | 120 | 220 | 221 | 010 | 111 | 201 | 121 | 012 | 022 | 100 | 001 | 122 |
200 | 001 | 200 | 022 | 021 | 121 | 102 | 111 | 020 | 221 | 110 | 120 | 202 | 122 | 002 | 100 | 011 | 012 | 212 | 201 | 222 | 010 | 112 | 220 | 210 | 101 | 211 | 001 | 200 |
201 | 001 | 201 | 120 | 022 | 010 | 122 | 121 | 220 | 100 | 111 | 101 | 012 | 221 | 001 | 201 | 120 | 022 | 010 | 122 | 121 | 220 | 100 | 111 | 101 | 012 | 221 | 001 | 201 |
202 | 001 | 202 | 220 | 020 | 201 | 021 | 100 | 211 | 120 | 112 | 111 | 212 | 022 | 002 | 101 | 110 | 010 | 102 | 012 | 200 | 122 | 210 | 221 | 222 | 121 | 011 | 001 | 202 |
210 | 001 | 210 | 010 | 212 | 100 | 202 | 221 | 102 | 022 | 211 | 220 | 222 | 012 | 002 | 120 | 020 | 121 | 200 | 101 | 112 | 201 | 011 | 122 | 110 | 111 | 021 | 001 | 210 |
211 | 001 | 211 | 101 | 210 | 220 | 112 | 010 | 222 | 201 | 212 | 012 | 011 | 100 | 002 | 122 | 202 | 120 | 110 | 221 | 020 | 111 | 102 | 121 | 021 | 022 | 200 | 001 | 211 |
212 | 001 | 212 | 221 | 211 | 012 | 020 | 101 | 011 | 111 | 210 | 100 | 102 | 220 | 002 | 121 | 112 | 122 | 021 | 010 | 202 | 022 | 222 | 120 | 200 | 201 | 110 | 001 | 212 |
220 | 001 | 220 | 201 | 100 | 120 | 111 | 022 | 101 | 010 | 012 | 122 | 221 | 121 | 001 | 220 | 201 | 100 | 120 | 111 | 022 | 101 | 010 | 012 | 122 | 221 | 121 | 001 | 220 |
221 | 001 | 221 | 012 | 101 | 111 | 100 | 220 | 121 | 122 | 010 | 022 | 120 | 201 | 001 | 221 | 012 | 101 | 111 | 100 | 220 | 121 | 122 | 010 | 022 | 120 | 201 | 001 | 221 |
222 | 001 | 222 | 122 | 102 | 101 | 212 | 120 | 021 | 220 | 011 | 221 | 200 | 010 | 002 | 111 | 211 | 201 | 202 | 121 | 210 | 012 | 110 | 022 | 112 | 100 | 020 | 001 | 222 |
GF(5^2)
Order: 25
Reduction polynomial: Mod(1, 5)*x^2 + Mod(1, 5)*x + Mod(1, 5)
Multiplication
* | 00 | 01 | 02 | 03 | 04 | 10 | 11 | 12 | 13 | 14 | 20 | 21 | 22 | 23 | 24 | 30 | 31 | 32 | 33 | 34 | 40 | 41 | 42 | 43 | 44 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
01 | 00 | 01 | 02 | 03 | 04 | 10 | 11 | 12 | 13 | 14 | 20 | 21 | 22 | 23 | 24 | 30 | 31 | 32 | 33 | 34 | 40 | 41 | 42 | 43 | 44 |
02 | 00 | 02 | 04 | 01 | 03 | 20 | 22 | 24 | 21 | 23 | 40 | 42 | 44 | 41 | 43 | 10 | 12 | 14 | 11 | 13 | 30 | 32 | 34 | 31 | 33 |
03 | 00 | 03 | 01 | 04 | 02 | 30 | 33 | 31 | 34 | 32 | 10 | 13 | 11 | 14 | 12 | 40 | 43 | 41 | 44 | 42 | 20 | 23 | 21 | 24 | 22 |
04 | 00 | 04 | 03 | 02 | 01 | 40 | 44 | 43 | 42 | 41 | 30 | 34 | 33 | 32 | 31 | 20 | 24 | 23 | 22 | 21 | 10 | 14 | 13 | 12 | 11 |
10 | 00 | 10 | 20 | 30 | 40 | 44 | 04 | 14 | 24 | 34 | 33 | 43 | 03 | 13 | 23 | 22 | 32 | 42 | 02 | 12 | 11 | 21 | 31 | 41 | 01 |
11 | 00 | 11 | 22 | 33 | 44 | 04 | 10 | 21 | 32 | 43 | 03 | 14 | 20 | 31 | 42 | 02 | 13 | 24 | 30 | 41 | 01 | 12 | 23 | 34 | 40 |
12 | 00 | 12 | 24 | 31 | 43 | 14 | 21 | 33 | 40 | 02 | 23 | 30 | 42 | 04 | 11 | 32 | 44 | 01 | 13 | 20 | 41 | 03 | 10 | 22 | 34 |
13 | 00 | 13 | 21 | 34 | 42 | 24 | 32 | 40 | 03 | 11 | 43 | 01 | 14 | 22 | 30 | 12 | 20 | 33 | 41 | 04 | 31 | 44 | 02 | 10 | 23 |
14 | 00 | 14 | 23 | 32 | 41 | 34 | 43 | 02 | 11 | 20 | 13 | 22 | 31 | 40 | 04 | 42 | 01 | 10 | 24 | 33 | 21 | 30 | 44 | 03 | 12 |
20 | 00 | 20 | 40 | 10 | 30 | 33 | 03 | 23 | 43 | 13 | 11 | 31 | 01 | 21 | 41 | 44 | 14 | 34 | 04 | 24 | 22 | 42 | 12 | 32 | 02 |
21 | 00 | 21 | 42 | 13 | 34 | 43 | 14 | 30 | 01 | 22 | 31 | 02 | 23 | 44 | 10 | 24 | 40 | 11 | 32 | 03 | 12 | 33 | 04 | 20 | 41 |
22 | 00 | 22 | 44 | 11 | 33 | 03 | 20 | 42 | 14 | 31 | 01 | 23 | 40 | 12 | 34 | 04 | 21 | 43 | 10 | 32 | 02 | 24 | 41 | 13 | 30 |
23 | 00 | 23 | 41 | 14 | 32 | 13 | 31 | 04 | 22 | 40 | 21 | 44 | 12 | 30 | 03 | 34 | 02 | 20 | 43 | 11 | 42 | 10 | 33 | 01 | 24 |
24 | 00 | 24 | 43 | 12 | 31 | 23 | 42 | 11 | 30 | 04 | 41 | 10 | 34 | 03 | 22 | 14 | 33 | 02 | 21 | 40 | 32 | 01 | 20 | 44 | 13 |
30 | 00 | 30 | 10 | 40 | 20 | 22 | 02 | 32 | 12 | 42 | 44 | 24 | 04 | 34 | 14 | 11 | 41 | 21 | 01 | 31 | 33 | 13 | 43 | 23 | 03 |
31 | 00 | 31 | 12 | 43 | 24 | 32 | 13 | 44 | 20 | 01 | 14 | 40 | 21 | 02 | 33 | 41 | 22 | 03 | 34 | 10 | 23 | 04 | 30 | 11 | 42 |
32 | 00 | 32 | 14 | 41 | 23 | 42 | 24 | 01 | 33 | 10 | 34 | 11 | 43 | 20 | 02 | 21 | 03 | 30 | 12 | 44 | 13 | 40 | 22 | 04 | 31 |
33 | 00 | 33 | 11 | 44 | 22 | 02 | 30 | 13 | 41 | 24 | 04 | 32 | 10 | 43 | 21 | 01 | 34 | 12 | 40 | 23 | 03 | 31 | 14 | 42 | 20 |
34 | 00 | 34 | 13 | 42 | 21 | 12 | 41 | 20 | 04 | 33 | 24 | 03 | 32 | 11 | 40 | 31 | 10 | 44 | 23 | 02 | 43 | 22 | 01 | 30 | 14 |
40 | 00 | 40 | 30 | 20 | 10 | 11 | 01 | 41 | 31 | 21 | 22 | 12 | 02 | 42 | 32 | 33 | 23 | 13 | 03 | 43 | 44 | 34 | 24 | 14 | 04 |
41 | 00 | 41 | 32 | 23 | 14 | 21 | 12 | 03 | 44 | 30 | 42 | 33 | 24 | 10 | 01 | 13 | 04 | 40 | 31 | 22 | 34 | 20 | 11 | 02 | 43 |
42 | 00 | 42 | 34 | 21 | 13 | 31 | 23 | 10 | 02 | 44 | 12 | 04 | 41 | 33 | 20 | 43 | 30 | 22 | 14 | 01 | 24 | 11 | 03 | 40 | 32 |
43 | 00 | 43 | 31 | 24 | 12 | 41 | 34 | 22 | 10 | 03 | 32 | 20 | 13 | 01 | 44 | 23 | 11 | 04 | 42 | 30 | 14 | 02 | 40 | 33 | 21 |
44 | 00 | 44 | 33 | 22 | 11 | 01 | 40 | 34 | 23 | 12 | 02 | 41 | 30 | 24 | 13 | 03 | 42 | 31 | 20 | 14 | 04 | 43 | 32 | 21 | 10 |
Multiplicative inverse (reciprocal)
x | 01 | 02 | 03 | 04 | 10 | 11 | 12 | 13 | 14 | 20 | 21 | 22 | 23 | 24 | 30 | 31 | 32 | 33 | 34 | 40 | 41 | 42 | 43 | 44 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x^-1 | 01 | 03 | 02 | 04 | 44 | 40 | 32 | 21 | 31 | 22 | 13 | 20 | 43 | 41 | 33 | 14 | 12 | 30 | 42 | 11 | 24 | 34 | 23 | 10 |
Raising to a power (exponentiation)
^ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
00 | ? | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 | 01 |
02 | 01 | 02 | 04 | 03 | 01 | 02 | 04 | 03 | 01 | 02 | 04 | 03 | 01 | 02 | 04 | 03 | 01 | 02 | 04 | 03 | 01 | 02 | 04 | 03 | 01 | 02 |
03 | 01 | 03 | 04 | 02 | 01 | 03 | 04 | 02 | 01 | 03 | 04 | 02 | 01 | 03 | 04 | 02 | 01 | 03 | 04 | 02 | 01 | 03 | 04 | 02 | 01 | 03 |
04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 | 01 | 04 |
10 | 01 | 10 | 44 | 01 | 10 | 44 | 01 | 10 | 44 | 01 | 10 | 44 | 01 | 10 | 44 | 01 | 10 | 44 | 01 | 10 | 44 | 01 | 10 | 44 | 01 | 10 |
11 | 01 | 11 | 10 | 04 | 44 | 40 | 01 | 11 | 10 | 04 | 44 | 40 | 01 | 11 | 10 | 04 | 44 | 40 | 01 | 11 | 10 | 04 | 44 | 40 | 01 | 11 |
12 | 01 | 12 | 33 | 13 | 40 | 41 | 03 | 31 | 44 | 34 | 20 | 23 | 04 | 43 | 22 | 42 | 10 | 14 | 02 | 24 | 11 | 21 | 30 | 32 | 01 | 12 |
13 | 01 | 13 | 03 | 34 | 04 | 42 | 02 | 21 | 01 | 13 | 03 | 34 | 04 | 42 | 02 | 21 | 01 | 13 | 03 | 34 | 04 | 42 | 02 | 21 | 01 | 13 |
14 | 01 | 14 | 20 | 13 | 11 | 43 | 03 | 32 | 10 | 34 | 33 | 24 | 04 | 41 | 30 | 42 | 44 | 12 | 02 | 23 | 40 | 21 | 22 | 31 | 01 | 14 |
20 | 01 | 20 | 11 | 03 | 10 | 33 | 04 | 30 | 44 | 02 | 40 | 22 | 01 | 20 | 11 | 03 | 10 | 33 | 04 | 30 | 44 | 02 | 40 | 22 | 01 | 20 |
21 | 01 | 21 | 02 | 42 | 04 | 34 | 03 | 13 | 01 | 21 | 02 | 42 | 04 | 34 | 03 | 13 | 01 | 21 | 02 | 42 | 04 | 34 | 03 | 13 | 01 | 21 |
22 | 01 | 22 | 40 | 02 | 44 | 30 | 04 | 33 | 10 | 03 | 11 | 20 | 01 | 22 | 40 | 02 | 44 | 30 | 04 | 33 | 10 | 03 | 11 | 20 | 01 | 22 |
23 | 01 | 23 | 30 | 34 | 11 | 31 | 02 | 41 | 10 | 13 | 22 | 12 | 04 | 32 | 20 | 21 | 44 | 24 | 03 | 14 | 40 | 42 | 33 | 43 | 01 | 23 |
24 | 01 | 24 | 22 | 34 | 40 | 32 | 02 | 43 | 44 | 13 | 30 | 14 | 04 | 31 | 33 | 21 | 10 | 23 | 03 | 12 | 11 | 42 | 20 | 41 | 01 | 24 |
30 | 01 | 30 | 11 | 02 | 10 | 22 | 04 | 20 | 44 | 03 | 40 | 33 | 01 | 30 | 11 | 02 | 10 | 22 | 04 | 20 | 44 | 03 | 40 | 33 | 01 | 30 |
31 | 01 | 31 | 22 | 21 | 40 | 23 | 02 | 12 | 44 | 42 | 30 | 41 | 04 | 24 | 33 | 34 | 10 | 32 | 03 | 43 | 11 | 13 | 20 | 14 | 01 | 31 |
32 | 01 | 32 | 30 | 21 | 11 | 24 | 02 | 14 | 10 | 42 | 22 | 43 | 04 | 23 | 20 | 34 | 44 | 31 | 03 | 41 | 40 | 13 | 33 | 12 | 01 | 32 |
33 | 01 | 33 | 40 | 03 | 44 | 20 | 04 | 22 | 10 | 02 | 11 | 30 | 01 | 33 | 40 | 03 | 44 | 20 | 04 | 22 | 10 | 02 | 11 | 30 | 01 | 33 |
34 | 01 | 34 | 02 | 13 | 04 | 21 | 03 | 42 | 01 | 34 | 02 | 13 | 04 | 21 | 03 | 42 | 01 | 34 | 02 | 13 | 04 | 21 | 03 | 42 | 01 | 34 |
40 | 01 | 40 | 44 | 04 | 10 | 11 | 01 | 40 | 44 | 04 | 10 | 11 | 01 | 40 | 44 | 04 | 10 | 11 | 01 | 40 | 44 | 04 | 10 | 11 | 01 | 40 |
41 | 01 | 41 | 20 | 42 | 11 | 12 | 03 | 23 | 10 | 21 | 33 | 31 | 04 | 14 | 30 | 13 | 44 | 43 | 02 | 32 | 40 | 34 | 22 | 24 | 01 | 41 |
42 | 01 | 42 | 03 | 21 | 04 | 13 | 02 | 34 | 01 | 42 | 03 | 21 | 04 | 13 | 02 | 34 | 01 | 42 | 03 | 21 | 04 | 13 | 02 | 34 | 01 | 42 |
43 | 01 | 43 | 33 | 42 | 40 | 14 | 03 | 24 | 44 | 21 | 20 | 32 | 04 | 12 | 22 | 13 | 10 | 41 | 02 | 31 | 11 | 34 | 30 | 23 | 01 | 43 |
44 | 01 | 44 | 10 | 01 | 44 | 10 | 01 | 44 | 10 | 01 | 44 | 10 | 01 | 44 | 10 | 01 | 44 | 10 | 01 | 44 | 10 | 01 | 44 | 10 | 01 | 44 |
No comments :
Post a Comment