Tuesday, October 11, 2016

[ssgyfepw] Tree digit separators

Insert different separators recursively (like a binary tree) between digits of a long digit string to make it easier to read.  Here we demonstrate one possible collection of separators on the SHA-512 hash of the empty string.

cf 83.e1 35:7e ef.b8 bd ** f1 54.28 50:d6 6d.80 07
d6 20.e4 05:0b 57.15 dc ** 83 f4.a9 21:d3 6c.e9 ce

47 d0.d1 3c:5d 85.f2 b0 ** ff 83.18 d2:87 7e.ec 2f
63 b9.31 bd:47 41.7a 81 ** a5 38.32 7a:f9 27.da 3e

The separators get fancier further up the tree. "nothing", space, period, colon, double-asterisk, line break, paragraph break, (to be used later) line of dashes, line of equal signs in its own paragraph.

Alternatively, we could repeat the smaller separators each time, building up a little pyramid.  This time we avoid newline separators but add some different ones: cf 83 . e1 35 .,. 7e ef . b8 bd .,:,. f1 54 . 28 50 .,. d6 6d . 80 07 .,:':,. d6 20 . e4 05 .,. 0b 57 . 15 dc .,:,. 83 f4 . a9 21 .,. d3 6c . e9 ce .,:'**':,. 47 d0 . d1 3c .,. 5d 85 . f2 b0 .,:,. ff 83 . 18 d2 .,. 87 7e . ec 2f .,:':,. 63 b9 . 31 bd .,. 47 41 . 7a 81 .,:,. a5 38 . 32 7a .,. f9 27 . da 3e

With groupings of 3 digits instead of 2, this is isomorphic to "extremely long scale".  Below is a 768-digit number between a "septillion" and an "octillion".

123 456.789 012:345 678.901 234 ** 567 890.123 456:789 012.345 678
901 234.567 890:123 456.789 012 ** 345 678.901 234:567 890.123 456

789 012.345 678:901 234.567 890 ** 123 456.789 012:345 678.901 234
567 890.123 456:789 012.345 678 ** 901 234.567 890:123 456.789 012
------------------------------------------------------------------
345 678.901 234:567 890.123 456 ** 789 012.345 678:901 234.567 890
123 456.789 012:345 678.901 234 ** 567 890.123 456:789 012.345 678

901 234.567 890:123 456.789 012 ** 345 678.901 234:567 890.123 456
789 012.345 678:901 234.567 890 ** 123 456.789 012:345 678.901 234

==================================================================

567 890.123 456:789 012.345 678 ** 901 234.567 890:123 456.789 012
345 678.901 234:567 890.123 456 ** 789 012.345 678:901 234.567 890

123 456.789 012:345 678.901 234 ** 567 890.123 456:789 012.345 678
901 234.567 890:123 456.789 012 ** 345 678.901 234:567 890.123 456
------------------------------------------------------------------
789 012.345 678:901 234.567 890 ** 123 456.789 012:345 678.901 234
567 890.123 456:789 012.345 678 ** 901 234.567 890:123 456.789 012

345 678.901 234:567 890.123 456 ** 789 012.345 678:901 234.567 890
123 456.789 012:345 678.901 234 ** 567 890.123 456:789 012.345 678

We can also experiment with a ternary tree where each separator, including "nothing", is used up to twice in a row.  (We again change up the sequence of separators.)  Here is a 243-digit number: 123 456 789 . 012 345 678 . 901 234 567 .:. 890 123 456 . 789 012 345 . 678 901 234 .:. 567 890 123 . 456 789 012 . 345 678 901 .:*:. 234 567 890 . 123 456 789 . 012 345 678 .:. 901 234 567 . 890 123 456 . 789 012 345 .:. 678 901 234 . 567 890 123 . 456 789 012 .:*:. 345 678 901 . 234 567 890 . 123 456 789 .:. 012 345 678 . 901 234 567 . 890 123 456 .:. 789 012 345 . 678 901 234 . 567 890 123

Not specified is what to do if the binary or ternary tree is not full.

No comments :