Let A and B be complex algebraic numbers. Compute Arg(A * exp B)/pi, and print the result in base 26, using some random permutation of a...z as digits. How difficult is it to recover polynomials that define A and B?
These operations were chosen aesthetically, seeking randomness. RootOf acts like a super square root function, and exp seems like a super version of raising to an integer power.
If the numbers are purely real, omit Arg/pi. Perhaps just keep fractional part of magnitude.
-.rcdooblmwohyiqqzfxfkzqytsfkukwqeexypyhvvourecyvgbtqdhlimbmjqmwwwvwusqxfvjoccfnvutrcaveenfoxngmquucktlelbdllrwffrlumavwvmmcxdbxmdxgttibgotntevigkjdphzwqxtygymhbpexdafvukuaromkcffclwudhvvvlvbdweondsjlvljbkscxzlxdbjhuhfbjxhzskbvfqzktrmjxrpkagswiaasclzpsicdyyfxebeviuoudszeidfyvwcfnzryvlkeezmmiofjeulcutvifkcyfaamjbfgbjabrqvqubweedyickhanabhvcdexdketxwivmslmfmifjennxqimhifjbraumriwfuebthqwhqqdnjkgmyhomogiwmkklvdlhhmxnejaphvxgfvhxhldonwjlapfkxucwldjgjqmgjldpjyfxzdqbnufycjzzearftipoyiqzkjsuupljhzxiffpzixjegexjfgvsotxlgwyaevcqdwayujtkwbdninhkcvsxhsegoxgbgjxyvihkkvvtoaawlzpnmmzpviltbhzfdrjbcrlotrtildjfvkpxdjjfpzotpehzefwlfjuetpdmriuqpnlnvvkrwbutyhaaqpnzhptepqqwbzeluijfwrkfxyvrjkffedmhdimxycgehhqzzedvvicnzbcthuywjjbukoouuseljzccjwjyfmiqvijwourfpqjqucfalntzyvtztwuckpekjcewdsuewxycxaovnluevgjpceawhdrgngvrmkcrplplaqfgffdboikerjzrceocurdepterhdtdhgfkhqbjhqcinwcxaeddtyxvwokckcpckinnapymcqdembhzofictyxtwwelzrtsktcquuhfhjjmezuxwezuymegygpdvptgxlrnvszzivufnalsrrudpweulgoiwwmcygwdpsttjiuefsyhhmncunaqwfnpzlbrreslseybdttrwqnmzpaeeusdvnwwrfrwpjlsgruarosixuhrxfzdkhzvsqldscflvzyetjuifmkirjjkcutjrndajddybpllgwvsxkkearzelhwppgxeks
-884634620*A^9 + 339378500*A^8 + 581026426*A^7 + 435779861*A^6 - 441519897*A^5 - 427609235*A^4 + 355261914*A^3 + 672930902*A^2 + 698325500*A + 241655515
A=0.8627473194 - 0.6655741718*i
-607094305*B^9 + 845121587*B^8 - 1030397417*B^7 - 350645728*B^6 + 155967637*B^5 - 73080261*B^4 - 50614545*B^3 - 699949645*B^2 - 1033333909*B + 142213416
B=-0.8025688733 + 0.3078297537*i
Permutation: pqrdfbtvwxneuzijmshyglacko
No comments :
Post a Comment