Wednesday, October 02, 2024

[egfgwujd] twin primes adjacent to highly composite numbers

below are some numbers N with many divisors and for which N-1 and N+1 are both prime, i.e., twin primes.

the suffix A indicates a highly composite number (sets a new record for number of divisors among all numbers, not necessarily those between twin primes); B similarly indicates it ties the record for number of divisors (largely composite number); C indicates a new second place in number of divisors; D ties second place number of divisors.

4/A 6/A 12/A 18/A 30/B 42/D 60/A 72/B 108/B 180/A 240/A 420/B 432/D 600/A 660/B 1320/D 2340/D 3360/A 5280/D 5880/D 6300/C 7560/A 9240/A 21840/D 35280/D 42840/B 55440/A 65520/A 92400/D 100800/C 110880/A 128520/B 180180/D 415800/B 453600/D 514080/D 526680/D 540540/D 1867320/D 1912680/D 1921920/D 1940400/C 2489760/D 6652800/D 6846840/D 7068600/D 28828800/B 31600800/B 34594560/D 85765680/D 100900800/C 121080960/D 232792560/A 287567280/D 397837440/D 634888800/D 845404560/D 1259818560/D 1470268800/B 1574773200/D 6299092800/D 10708457760/D 12681068400/B 23827003200/D 32125373280/B 32590958400/C 33816182400/A 34918884000/B 40156716600/B 73329656400/A 135019684800/D 216497080800/B 439977938400/D 449755225920/B 578256719040/D 2126560035600/D 2835413380800/B 2971597028400/D 6278415343200/B 18632716502400/A 18835246029600/C 19275223968000/B 59753194300800/B 62403537596400/D 69712060017600/B 92199821313600/B 130429015516800/A 279490747536000/C 313704270079200/B 448148957256000/D 838472242608000/D 1382997319704000/D 1402111916805600/B 1498809290378400/D

investigated 1169 numbers from 1 to 1516237305382800 in those categories (A, B, C, D) previously generated.  95 numbers (above) are surrounded by twin primes.

inspired by some numbers between twin primes being quite smooth.  if searching for large twin primes (not sure why one would want to do this), is it profitable to restrict to those bracketing a smooth number?  (seems yes.)  if so, how smooth?  perhaps Pierpont, or some other sequence of very smooth numbers.

No comments:

Post a Comment