Sunday, May 19, 2024

[bvqqdwkp] Pierpont twin primes

below are the 73 twin primes of the form (2^a * 3^b plus and minus 1) less than 2^10000 ~= 10^3010.

(2^2 * 3^0 +- 1), (2^1 * 3^1 +- 1), (2^2 * 3^1 +- 1), (2^1 * 3^2 +- 1), (2^3 * 3^2 +- 1), (2^2 * 3^3 +- 1), (2^6 * 3^1 +- 1), (2^4 * 3^3 +- 1), (2^7 * 3^2 +- 1), (2^5 * 3^4 +- 1), (2^6 * 3^7 +- 1), (2^3 * 3^10 +- 1), (2^18 * 3^1 +- 1), (2^12 * 3^5 +- 1), (2^2 * 3^15 +- 1), (2^18 * 3^5 +- 1), (2^21 * 3^4 +- 1), (2^24 * 3^5 +- 1), (2^27 * 3^4 +- 1), (2^30 * 3^7 +- 1), (2^33 * 3^8 +- 1), (2^43 * 3^2 +- 1), (2^32 * 3^9 +- 1), (2^36 * 3^7 +- 1), (2^11 * 3^24 +- 1), (2^31 * 3^12 +- 1), (2^43 * 3^8 +- 1), (2^32 * 3^15 +- 1), (2^50 * 3^9 +- 1), (2^63 * 3^2 +- 1), (2^66 * 3^25 +- 1), (2^79 * 3^20 +- 1), (2^99 * 3^10 +- 1), (2^57 * 3^64 +- 1), (2^82 * 3^63 +- 1), (2^148 * 3^27 +- 1), (2^63 * 3^88 +- 1), (2^56 * 3^99 +- 1), (2^211 * 3^2 +- 1), (2^275 * 3^16 +- 1), (2^287 * 3^10 +- 1), (2^90 * 3^169 +- 1), (2^148 * 3^135 +- 1), (2^298 * 3^51 +- 1), (2^160 * 3^141 +- 1), (2^363 * 3^52 +- 1), (2^134 * 3^231 +- 1), (2^49 * 3^320 +- 1), (2^529 * 3^44 +- 1), (2^264 * 3^419 +- 1), (2^960 * 3^143 +- 1), (2^541 * 3^476 +- 1), (2^988 * 3^207 +- 1), (2^1015 * 3^332 +- 1), (2^1440 * 3^97 +- 1), (2^1295 * 3^324 +- 1), (2^979 * 3^738 +- 1), (2^258 * 3^1493 +- 1), (2^637 * 3^1320 +- 1), (2^2320 * 3^333 +- 1), (2^1036 * 3^1167 +- 1), (2^2815 * 3^188 +- 1), (2^1063 * 3^1440 +- 1), (2^180 * 3^2251 +- 1), (2^888 * 3^2033 +- 1), (2^300 * 3^2819 +- 1), (2^2176 * 3^2175 +- 1), (2^4014 * 3^1879 +- 1), (2^280 * 3^4311 +- 1), (2^6228 * 3^571 +- 1), (2^6981 * 3^560 +- 1), (2^3505 * 3^2892 +- 1), (2^5899 * 3^2570 +- 1)

is this a statistically high yield of twin primes?

also previously.

No comments:

Post a Comment