Saturday, March 09, 2024

[aoypoxfn] factorization challenges easy to type

each composite number below consists of repetitions of the digit string 1234567890 except the final few digits.  the smaller factors are large enough that quadratic sieve is probably more efficient than elliptic curve method (ECM).

previously similar for base 2, assuming you have an expression parser.

40 digits: 1234567890123456789012345678901234567759 = 5284744045008013 * 233609779321220631386443

50 digits: 12345678901234567890123456789012345678901234567633 = 92279162895906968524229 * 133786203881810018387538077

60 digits: 123456789012345678901234567890123456789012345678901234567831 = 87988560978576315942371700757 * 1403100444413510291678340665083

70 digits: 1234567890123456789012345678901234567890123456789012345678901234566713 = 61208527479308458227554760703 * 20169867516267279020392646921656369545671

80 digits: 12345678901234567890123456789012345678901234567890123456789012345678901234567751 = 575099128882847693294536030177708942207 * 21467045038333698701383939676398791777593

90 digits: 123456789012345678901234567890123456789012345678901234567890123456789012345678901234567597 = 40166540925345636983244707230202848993 * 3073622626399545288925403158158369054873454157207629

No comments:

Post a Comment